计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (4): 77-88.DOI: 10.3778/j.issn.1002-8331.2205-0566
李永钰,马良,刘勇
LI Yongyu, MA Liang, LIU Yong
摘要: 针对Lichtenberg算法收敛速度慢、易陷入局部最优等问题,提出融合分区导向搜索与自适应扩散的新型Lichtenberg算法(novel Lichtenberg algorithm,NLA)。根据群体粒子的适应度值将搜索空间分为中心区域和边缘区域,分别利用螺旋系数的动态趋向性和Levy变异的随机性,对中心区域和边缘区域的粒子进行位置更新,提高种群多样性,加强算法的全局搜索能力;引入自适应扩散策略,充分利用群体各个粒子的位置和适应度值信息来指导其进行信息交流,避免算法陷入局部极值,提高算法的局部优化能力。采用CEC2021测试函数和20个不同特点的高维测试函数进行数值实验,并将NLA算法与六种不同类型的智能优化算法进行对比,实验结果表明,NLA算法具有更高的寻优精度和收敛速度。最后验证了两种改进策略对NLA算法的有效性。