计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (22): 174-181.DOI: 10.3778/j.issn.1002-8331.2208-0425
王金栋,张惊雷,文彪
WANG Jindong, ZHANG Jinglei, WEN Biao
摘要: 针对基于Transformer架构的目标跟踪算法在特征增强过程中应用多头自注意力产生的计算复杂度高的问题,提出一种稀疏自注意力方法以实现线性计算复杂度的目标跟踪算法(E-TransT)。在特征提取网络中加入金字塔切分注意力模块并且调整网络输出结构,使提取的特征具有不同尺度的上下文信息。设计了一个通过稀疏自注意力方法实现改进的自注意增强模块,有效减少了在注意力计算过程中的参数量,在降低计算复杂度的同时保持了捕捉像素级细节的能力。采用LaSOT、TrackingNet等5种测试集进行算法性能评测实验,结果表明所提算法的跟踪成功率、精度等主要评价指标较TransT、SiamR-CNN等11种经典算法均获得提升。