计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (22): 166-173.DOI: 10.3778/j.issn.1002-8331.2207-0449
林霞,李建微
LIN Xia, LI Jianwei
摘要: 年龄合成生成逼真的人脸图像可以有效地提高跨年龄人脸验证准确率,对寻找走失人口有着重要的意义,但是青少年颅骨复合体未发育完全,使得面向青少年的年龄合成十分困难。因此提出了一种面向青少年的端到端的年龄合成模型。通过StyleGAN保留人脸的语义信息,在人脸编码特征上添加年龄通道实现年龄的转化,引入亲缘特征匹配模块引导青少年的面部老化,将亲缘特征匹配率加入损失函数参与训练。该算法模型可以在保持个体身份信息的同时,实现平滑的年龄合成,生成逼真的人脸图像。该模型不仅提升了视觉效果,并且实验表明该模型跨年龄人脸验证准确率达到95.3%,身份召回率达到92.7%,年龄合成平均年龄误差减少4年,较现有算法有较好的提升。