计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (2): 201-207.DOI: 10.3778/j.issn.1002-8331.2008-0452
汪慧兰,戴舒,刘丹,王桂丽
WANG Huilan, DAI Shu, LIU Dan, WANG Guili
摘要: 由于交通场景中的行人目标所处的背景环境复杂、目标较小等因素,使得目前的行人检测算法在实际应用中存在检测精度不高、检测速度较慢的问题。因此行人检测模块作为高级辅助驾驶系统的核心模块,一直以来都是目标检测的研究热点之一。针对交通场景中小尺度行人目标,将传统的SSD网络结构中的主干网络卷积层结合Inception模块中的稀疏连接来优化卷积结构,从而增强网络的特征提取能力。同时利用残差结构组成的预测模块代替传统的两个3×3大小的卷积核来进一步提取特征图的深层特征,提高对小尺度行人目标的检测精度。引入Focal Loss函数作为网络的分类损失函数,使得损失函数更加关注于包含更多有用信息的困难负样本,解决训练过程中正负样本不平衡的问题,加快网络的收敛和稳定。实验结果表明,对于交通场景中小尺度的行人目标改进的SSD算法在检测精度和速度上都有所提高。