计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (17): 13-22.DOI: 10.3778/j.issn.1002-8331.2111-0219
徐琳宏,刘鑫,阎月,原伟,林鸿飞
出版日期:
2022-09-01
发布日期:
2022-09-01
XU Linhong, LIU Xin, YAN Yue, YUAN Wei, LIN Hongfei
Online:
2022-09-01
Published:
2022-09-01
摘要: 社交媒体中蕴含着用户的大量观点和评论,从中提取情感信息,有助于了解俄语区民众对热点事件、产品和服务等的真实态度,为相关政策的制定和调整提供依据,进而促进区域内国家间的合作共赢。按情感分析的流程从资源建设和自动识别两个方面详细梳理了俄语情感分析领域的研究现状,并在此基础上对比分析了各类方法在不同数据集上性能和特征选择方案。研究结果发现俄语语料等资源的数据来源需要拓宽,且同类资源还可以进一步整合,自动识别方面主流的识别模型为机器学习和深度学习两种,整体识别准确率还有待提高。通过综述该领域的不足,探索了未来可能的研究方法,为进一步研究提供借鉴。
徐琳宏, 刘鑫, 阎月, 原伟, 林鸿飞. 俄语情感分析研究综述[J]. 计算机工程与应用, 2022, 58(17): 13-22.
XU Linhong, LIU Xin, YAN Yue, YUAN Wei, LIN Hongfei. Survey of Russian Sentiment Analysis[J]. Computer Engineering and Applications, 2022, 58(17): 13-22.
[1] Media Consumption in Russia 2020[EB/OL].[2021-10-11].https://www2.deloitte.com. [2] KOLTSOVA O,ALEXEEVA S,PASHAKHIN S,et al.PolSentiLex:sentiment detection in socio-political discussions on Russian social media[C]//Conference on Artificial Intelligence and Natural Language,2020:1-16. [3] KOLTSOVA O,ALEXEEVA S,KOLTSOV S.An opinion word lexicon and a training dataset for Russian sentiment analysis of social media[C]//Proceedings of the International Conference “Dialogue”,2016:277-287. [4] LOUKACHEVITCH N,LEVCHIK A.Creating a general russian sentiment lexicon[C]//Proceedings of the Tenth International Conference on Language Resources and Evaluation(LREC),2016:1171-1176. [5] 朱珊珊,原伟.面向俄文情感分析的新闻评论语料库建设与应用[J].外语学刊,2020(1):24-29. ZHU S S,YUAN W.Building and using news comments corpus for Russian sentiment analysis[J].Foreign Language Research,2020(1):24-29. [6] KOTELNIKOV E,PESKISHEVA T,KOTELNIKOVA A,et al.A Comparative study of publicly available russian sentiment lexicons[C]//Conference on Artificial Intelligence and Natural Language,2018:139-151. [7] KOTELNIKOV E,BUSHMELEVA N,RAZOVA E,et al.Manually created sentiment lexicons:research and development[C]//Annual International Conference “Dialogue”,2016:300-314. [8] TUTUBALINA E.Extraction and summarization methods for critical user reviews of a product[D].Kazan:Kazan Federal University,2016. [9] BLINOV P,KLEKOVKINA M,KOTELNIKOV E,et al.Research of lexical approach and machine learning methods for sentiment analysis[C]//Annual International Conference “Dialogue”,2013:51-61. [10] PANCHENKO A I.Sentiment index of the Russian speaking Facebook[C]//Proceedings of the International Conference on Computational Linguistics and Intelligent Technologies “Dialogue”,2014:506-517. [11] KUZNETSOVA E,LOUKACHEVITCH N,CHETVIORKIN I.Testing rules for a sentiment analysis system[C]//Annual International Conference “Dialogue”,2013:71-80. [12] CHEN Y,SKIENA S.Building sentiment lexicons for all major languages[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics,Baltimore,2014:383-389. [13] RYBAKOV V,MALAFEEV A.Aspect-based sentiment analysis of Russian hotel reviews[C]//Proceedings of the Seventh International Conference on Analysis of Images,2018:75-84. [14] BRUNOVA E,BIDUYA Y.Aspect extraction and sentiment analysis in user reviews in russian about bank service quality[C]//IEEE 11th International Conference on Application of Information and Communication Technologies(AICT),2017:1-4. [15] KAMIL S,LEON D.Abusive language recognition in russian[C]//Proceedings of the 8th Workshop on Balto-Slavic Natural Language Processing,2021:20-25. [16] MOZETIVC I,GRFAR M,SMAILOVIC J.Multilingual Twitter sentiment classification:the role of human annotators[J].PLoS One,2016,11(5):1-26. [17] ROGERS A,ROMANOV A,RUMSHISKY S,et al.RuSentiment:an enriched sentiment analysis dataset for social media in Russian[C]//Proceedings of COLING,2018:755-763. [18] SAKENOVICH N S,ZHARMAGAMBETOV A S.On one approach of solving sentiment analysis task for kazakh and Russian languages using deep learning[C]//International Conference on Computational Collective Intelligence,2017:537-545. [19] LOUKACHEVITCH N,CHETVIORKIN I I.Open evaluating sentiment analysis systems in Russian[C]//Proceedings of the 4th Biennial International Workshop on Balto-Slavic Natural Language Processing,2013:12-17. [20] CHETVIROKIN I,LOUKACHEVITCH N.Sentiment analysis track at ROMIP 2012[C]//Proceedings of International Conference “Dialog”,2013:40-50. [21] ARAUJO M,REIS J,PEREIRA A.An evaluation of machine translation for multilingual sentence-level sentiment analysis[C]//Proceedings of the 31st Annual ACM Symposium on Applied Computing,2016:1-6. [22] YUSSUPOVA N,DIANA B.Applying of sentiment analysis for texts in Russian based on machine learning approach[C]//The Second International Conference on Advances in Information Mining and Management,2012:8-14. [23] CHETVIORKIN,I,BRASLAVSKIY P,LOUKACHEVICH N.Sentiment analysis track at ROMIP 2011[C]//Proceedings of International Conference “Dialog”,2012:1-14. [24] BOBICHEV V,KANISHEVA O,CHEREDNICHENKO O.Sentiment analysis in the Ukrainian and Russian news[C]//IEEE First Ukraine Conference on Electrical and Computer Engineering(UKRCON),2017:1050-1055. [25] RUBTSOVA Y.A method for development and analysis of short text corpus for the review classification task[C]//Proceedings of Conferences Digital Libraries:Advanced Methods and Technologies,2013:269-275. [26] BLINOV V,BOLOTOVA B,BRASLAVSKI P.Large dataset and language model fun-tuning for humor recognition[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,2019:4027-4032. [27] SMETANIN S,KOMAROV M.Sentiment analysis of product reviews in Russian using convolutional neural networks[C]//IEEE 21st Conference on Business Informatics(CBI),2019:482-486. [28] LOUKACHEVITCH N V,CHETVIORKIN I.Open evaluation of sentiment analysis systems based on the material of the Russian language[J].Scientific and Technical Information Processing,2014,41(6):370-376. [29] SIDOROV N,SLASTNIKOV S.Some features of sentiment analysis for Russian language posts and comments from social networks[J].Journal of Physics:Conference Series,2021,1740:1-7. [30] LOUKACHEVITCH N,RUBTSOVA Y.SentiRuEval-2016:overcoming time gap and data sparsity in tweet sentiment analysis[C]//Proceedings of the International Conference “Dialogue”,2016:416-426. [31] LOUKACHEVITCH N,BLINOV P,KOTELNIKOV E,et al.SentiRuEval:testing object-oriented sentiment analysis systems in Russian[J].Computational Linguistics and Intellectual Technologies,2015,2(14):3-15. [32] PONTIKI M,GALANIS D,PAPAGEORGIOU H,et al.SemEval-2016 Task 5:aspect based sentiment analysis[C]//Annual Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,2016:19-30. [33] BLINOV P,KOTELNIKOV E.Using distributed representations for aspect-based sentiment analysis[C]//Proceedings of International Conference “Dialog”,2014:64-75. [34] MAKAROVA V,PETRUSHIN V.RUSLANA:a database of Russian emotional utterances[C]//International Conference on Spoken Language Processing(ICSLP),2002:1-4. [35] PEREPELKINA O,KAZIMIROVA E,KONSTANTINOVA M.RAMAS:Russian multimodal corpus of dyadic interaction for studying emotion recognition[C]//International Conference on Speech and Computer(SPECOM),2018:501-510. [36] 徐琳宏,刘鑫,原伟,等.俄语多模态情感语料库的构建及应用[J].计算机科学,2021,48(11):312-318. XU L H,LIU X,YUAN W,et al.Construction and application of multimodal emotion corpus on Russian[J].Computer Science,2021,48(11):312-318. [37] MEDAGOGA N,SHANMUGANATHA S,WHALLEY J.A comparative analysis of opinion mining and sentiment classification in non-English languages[C]//International Conference on Advances in ICT for Emerging Regions,2014:1-5. [38] AVERCHENKOV V,BUDYLSKII D,PODVESOVSKII A.Hierarchical deep learning:a promising technique for opinion monitoring and sentiment analysis in Russian-language social networks[M]//Creativity in intelligent,technologies and data science.Switzerland:Springer International Publishing,2015:583-592. [39] VIKSNA R,JEKABSONS G.Sentiment analysis in Latvian and Russian:a survey[J].Applied Computer Systems,2018,23(1):45-51. [40] SMETANIN S.The applications of sentiment analysis for Russian language texts:current challenges and future perspectives[J].IEEE Access,2020,99:110693-110719. [41] SMETANIN S,KOMAROV M.Deep transfer learning baselines for sentiment analysis in Russian[J].Information Processing & Management,2021,58(3):1-19. [42] PAK A,PAROUBEK P.Language independent approach to sentiment analysis(LIMSI participation in ROMIP 2011)[C]//Annual International Conference “Dialogue”,2012:37-50. [43] CHETVIORKIN I,LOUKACHEVITCH N.Evaluating sentiment analysis systems in Russian[C]//Proceedings of the 4th Biennial International Workshop on Balto-Slavic Natural Language Processing,2013:12-17. [44] ADASKINA Y,PANICHEVA P,POPOV A.Syntax-based sentiment analysis of tweets in Russian[C]//Annual International Conference “Dialogue”,2015:1-11. [45] LOUKACHEVITCH N,RUBTSOVA Y.Entity-oriented sentiment analysis of tweets:results and problems Natalia[C]//Proceedings of the 18th International Conference on Text,Speech,and Dialogue,2015:551-559. [46] LAGUTINA K,LARIONOV V,PETRYAKOV V,et al.Sentiment classification of Russian texts using automatically generated thesaurus[C]//23rd Conference of Open Innovations Association(FRUCT),2018:217-222. [47] BAYMURZINA D,KUZNETSOV D,BURTSEV M.Language model embeddings improve sentiment analysis in Russian[C]//Annual International Conference “Dialogue”,2019:53-63. [48] KURATOV Y,ARKHIPOV M.Adaptation of deep bidirectional multilingual transformers for Russian language[C]//Annual International Conference “Dialogue”,2019:333-340. [49] ZVONAREY A,BILYI A.A comparison of machine learning methods of sentiment analysis based on Russian language Twitter data[C]//Proceedings of the 11th Majorov International Conference on Software Engineering and Computer Systems,2019:1-7. [50] DVOYNIKOVA A,VERKHOLYAK O,KARPOV A.Emotion recognition and sentiment analysis of extemporaneous speech transcriptions in Russian[C]//22nd International Conference on Speech and Computer(SPECOM),2020:136-144. [51] SVELOV K,PLATONOV K.Sentiment analysis of posts and comments in the accounts of Russian politicians on the social network[C]//25th FRUCT Conference Proceeding,2020:299-305. [52] GOLUBEV A,LOUKACHEVITCH N.Improving results on Russian sentiment datasets[C]//Conference on Artificial Intelligence and Natural Language,2020:109-121. [53] GOLUBEV A,LOUKACHEVITCH N.Use of bert neural network models for sentiment analysis in Russian[J].Automatic Documentation and Mathematical Linguistics,2021,55:17-25. [54] 刘鑫,祁瑞华,徐琳宏,等.融合多级特征的俄语推特文本情感分析[J].小型微型计算机系统,2021,42(6):1176-1183. LIU X,QI R H,XU L H,et al.Sentiment analysis of Russian tweets with multi-level features[J].Journal of Chinese Computer Systems,2021,42(6):1176-1183. [55] MAYOROV V,ANDRIANOV I.MayAnd at SemEval-2016 Task 5:syntactic and word2vec-based approach to aspect-based polarity detection in Russian[C]//Proceedings of the 10th International Workshop on Semantic Evaluation(SemEval-2016),2016:325-329. [56] ARKHIPENKO K,KOZLOV I,TROFIMOVICH J,et al.Comparison of neural network architectures for sentiment analysis of Russian tweets[C]//Annual International Conference “Dialogue”,2016:50-59. [57] VERKHOLYAK O,KARPOV A.Combined feature representation for emotion classification from Russian speech[C]//Conference on Artificial Intelligence and Natural Language,2017:68-73. [58] RUBTSOVA Y.Reducing the deterioration of sentiment analysis results due to the time impact[J].Information,2018,9:1-12. [59] ARASLANOV E,KOMOTSKIY E,AGBOZO E.Assessing the impact of text preprocessing in sentiment analysis of short social network messages in the Russian language[C]//International Conference on Data Analytics for Business and Industry:Way Towards a Sustainable Economy(ICDABI),2020:978-981. [60] 李慧.带情感意义俄语成语的综合研究[D].沈阳:辽宁大学,2013. LI H.Comprehensive phrase research on the Russian phrase with emotion[D].Shenyang:Liaoning University,2013. [61] 曹广跃.俄语情感类心理动词的级次性研究[D].哈尔滨:哈尔滨师范大学,2016. CAO G Y.A study on the order of emotional psychological verbs in Russian[D].Harbin:Harbin Normal University,2016. [62] 王向丽.论俄语情感意义的表达手段[D].济南:山东大学,2005. WANG X L.On the expression of emotional meaning in Russian[D].Jinan:Shandong University,2005. [63] 裴霞.俄语社交网络交际中情感的词汇表达手段[D].长春:吉林大学,2017. PEI X.Lexical expression of emotion in Russian social network communication[D].Changchun:Jilin University,2017. [64] 原伟,代勋勋,徐琳宏.基于俄汉新闻网评可比语料库的情感分析研究[J].解放军外国语学院学报,2019,42(2):99-106. YUAN W,DAI X X,XU L H.Sentimental analysis based on Russian-Chinese comparable corpus of news comments[J].Journal of PLA University of Foreign Languages,2019,42(2):99-106. [65] VERONIKA M,VALERY A.Phonetics of emotion in Russian speech[C]//15th International Congress of Phonetic Sciences(ICPHS),2003:2857-2860. [66] PETRUSHIN V,MAKAROVA V.Parameters of fricatives and affricates in Russian emotional speech[C]//International Conference on Speech and Computer(SPECOM),2006:25-29. [67] MAKAROVA V,PETRUSHIN V.Sonorant segment quality in Russian emotional speech[C]//16th International Congress of Phonetic Sciences(ICPHS),2007:2129-2132. [68] SIDOROV M.Could speaker,gender or age awareness be beneficial in speech-based emotion recognition?[C]//Proceedings of the Tenth International Conference on Language Resources and Evaluation(LREC),2016:61-68. [69] LITVINOVA O,SEREDIN P,LITVINOVA T.Deception detection in Russian texts[C]//Proceedings of the Student Research Workshop at the 15th Conference of the European Chapter of the Association for Computational Linguistics,2017:43-52. [70] BODRUNOVA S,BLEKANOV I,KUKARKIN M.Topics in the Russian twitter and relations between their interpretability and sentiment[C]//6th International Conference on Social Networks Analysis,Management and Security(SNAMS),2019:549-554. [71] ALVAREZ G,CHOI J,STROVER S.Good news,bad news:a sentiment analysis of the 2016 election Russian facebook ads[J].International Journal of Communication,2020,14:3027-3053. [72] 赵妍妍,秦兵,刘挺.文本情感分析[J].软件学报,2010,21(8):1834-1848. ZHAO Y Y,QIN B,LIU T.Sentiment analysis[J].Journal of Software,2010,21(8):1834-1848. [73] 杨亮,周逢清,林鸿飞,等.基于情感常识的情感分析[J].中文信息学报,2019,33(6):94-99. YANG L,ZHOU F Q,LIN H F,et al.Sentiment analysis based on emotion commonsense knowledge[J].Journal of Chinese Information Processing,2019,33(6):94-99. |
[1] | 陈秋嫦, 赵晖, 左恩光, 赵玉霞, 魏文钰. 上下文感知的树递归神经网络下隐式情感分析[J]. 计算机工程与应用, 2022, 58(7): 167-175. |
[2] | 郑诚, 魏素华, 曹源. 结合语法信息的BG-CNN用于方面级情感分类[J]. 计算机工程与应用, 2022, 58(5): 148-155. |
[3] | 赵宏, 傅兆阳, 赵凡. 基于BERT和层次化Attention的微博情感分析研究[J]. 计算机工程与应用, 2022, 58(5): 156-162. |
[4] | 徐超, 叶宁, 徐康, 王汝传. 融合MAML与BiLSTM的微博负面情感多分类方法[J]. 计算机工程与应用, 2022, 58(5): 179-185. |
[5] | 孟佳娜, 吕品, 于玉海, 郑志坤. 基于CNN的方面级跨领域情感分析研究[J]. 计算机工程与应用, 2022, 58(16): 175-183. |
[6] | 叶星鑫, 徐杨, 罗梦诗. 基于ALBERT-AFSFN的中文短文本情感分析[J]. 计算机工程与应用, 2022, 58(12): 170-176. |
[7] | 刘路路, 杨燕, 王杰. ABAFN:面向多模态的方面级情感分析模型[J]. 计算机工程与应用, 2022, 58(10): 193-199. |
[8] | 李晖,张天垣,金纾羽. 古代中国格律诗中的社会情感挖掘[J]. 计算机工程与应用, 2021, 57(7): 171-177. |
[9] | 杨善良,常征. 基于图注意力神经网络的中文隐式情感分析[J]. 计算机工程与应用, 2021, 57(24): 161-167. |
[10] | 沈瑞琳,潘伟民,彭成,尹鹏博. 基于多任务学习的微博谣言检测方法[J]. 计算机工程与应用, 2021, 57(24): 192-197. |
[11] | 袁勋,刘蓉,刘明. 融合多层注意力的方面级情感分析模型[J]. 计算机工程与应用, 2021, 57(22): 147-152. |
[12] | 赵丽华,王春立,初钰凤. 基于注意力双层BiReGU模型的方面术语提取方法[J]. 计算机工程与应用, 2021, 57(22): 160-165. |
[13] | 耿立校,刘丽莎,李恒昱. 多源异构数据融合驱动的股票指数预测研究[J]. 计算机工程与应用, 2021, 57(20): 142-149. |
[14] | 李文亮,杨秋翔,秦权. 多特征混合模型文本情感分析方法[J]. 计算机工程与应用, 2021, 57(19): 205-213. |
[15] | 胡任远,刘建华,卜冠南,张冬阳,罗逸轩. 融合BERT的多层次语义协同模型情感分析研究[J]. 计算机工程与应用, 2021, 57(13): 176-184. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||