计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (22): 160-165.DOI: 10.3778/j.issn.1002-8331.2007-0038
赵丽华,王春立,初钰凤
ZHAO Lihua, WANG Chunli, CHU Yufeng
摘要:
方面术语提取是方面级情感分析中的一项重要任务,目的是从在线产品评论中提取关键的方面术语。针对方面术语提取问题,提出基于注意力机制的双层BiReGU模型。该模型在传统BiLSTM模型的基础上,引入双嵌入机制和ReGU(Residual Gated Unit)作为辅助,以提高特征提取的能力。使用BiReGU学习文本特征表示,更好地捕捉词语间的长期依赖关系;在第一层BiReGU之后引入注意力机制,为文本中每个词语赋予不同的权重,得到融合特征后新的知识表示,再输入到第二层BiReGU中学习更加全局的文本特征表示,最后完成提取方面术语的任务。分别在SemEval 2014的Restaurant数据集和Laptop数据集做了相关的对比实验,实验结果证明了所提出方法的有效性。