计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (16): 123-128.DOI: 10.3778/j.issn.1002-8331.2104-0203
贾君霞,王会真,任凯,康文
JIA Junxia, WANG Huizhen, REN Kai, KANG Wen
摘要: 针对文本聚类时文本特征维度高,忽略文档词排列顺序和语义等问题,提出了一种基于句向量(Doc2vec)和卷积神经网络(convolutional neural networks,CNN)的文本特征提取方法用于文本聚类。首先利用Doc2vec模型把训练数据集中的文本转换成句向量,充分考虑文档词排列顺序和语义;然后利用CNN提取文本的深层语义特征,解决特征维度高的问题,得到能够用于聚类的文本特征向量;最后使用[k]-means算法进行聚类。实验结果表明,在爬取的搜狗新闻数据上,该文本聚类模型的准确率达到了0.776,F值指标达到了0.780,相比其他文本聚类模型均有所提高。