计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (16): 319-325.DOI: 10.3778/j.issn.1002-8331.2101-0189
田红丽,杨莹莹,闫会强
TIAN Hongli, YANG Yingying, YAN Huiqiang
摘要: 针对股市存在伪分型且分型数据集的类别样本不平衡问题,提出了一种结合缠论和深度学习的拐点预测方法(SMOTE-FLCN-WSVM)。在缠论的基础上,对数据集进行拐点的标注。深度学习模型从数据、特征以及分类算法三个层面对不平衡问题进行改进。首先采用SMOTE过采样算法对数据集进行预处理;再针对不平衡数据集特征提取困难的问题,使用引入Focal Loss的卷积神经网络挖掘数据的深层特征;然后利用引入类别权重参数的支持向量机对提取的特征进行分类。实验从实用性与有效性出发,选择绝对收益、相对收益与准确率对模型进行对比实验与收益评估。实验结果表明,所提模型具有可行性与实际应用价值。