计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (6): 74-80.DOI: 10.3778/j.issn.1002-8331.2002-0395
张福良,梁意文,谭成予
ZHANG Fuliang, LIANG Yiwen, TAN Chengyu
摘要:
针对现有Android恶意软件检测方法中存在的特征分析单一和固定化、对未知和潜伏性强的恶意软件检测能力弱等问题,构建一种Android恶意软件的人工自然杀伤细胞(Natural Killer cell,NK)检测模型。对人工自然杀伤细胞模型和树突状细胞算法(Dendritic Cell Algorithm,DCA)进行了研究,结合软件静态权限申请特征和动态API调用特征,经数据预处理后形成模型的各类输入信号。人工NK细胞输出刺激因子与DCA危险信号融合,提高了DCA的危险信号显著性,优化了DCA的检测过程。实验包含从VirusTotal等数据集选取的多种分类恶意软件样本1 150个,良性软件样本1 093个。实验结果表明与DCA和[K]-means等检测方法相比人工NK细胞检测模型提高了准确率并且降低了误报率。