计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (16): 253-262.DOI: 10.3778/j.issn.1002-8331.2005-0141
陆小玲,吴海锋,曾玉,孔伶旭,罗金玲
LU Xiaoling, WU Haifeng, ZENG Yu, KONG Lingxu, LUO Jinling
摘要:
阿尔兹海默症目前还无法被治愈,若能对其正确诊断,则可采用正确治疗方式延缓病人病情。为减少人工诊断的时间和成本,采用机器学习方法来辅助人工诊断阿尔兹海默症,提出了一种利用3D核磁共振成像信号来诊断的迁移学习方法。该方法采用MobileNet迁移网络来提取瓶颈特征,并增加了一个有监督训练的顶层来进一步降维和提取特征,最后在分类层中将被试者所有切片的特征进行合并和训练,完成阿尔兹海默症与正常控制的分类。该方法的优点在于,可使网络的训练时间下降,提高分类准确率。实验采用了OASIS数据对该方法进行测试,结果表明,该方法的分类准确率比传统迁移学习网络提高了约8个百分点,而时间只有传统迁移方法的1/60。