计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (15): 147-155.DOI: 10.3778/j.issn.1002-8331.2005-0149
杨春雨,徐洋,张思聪,李小剑
YANG Chunyu, XU Yang, ZHANG Sicong, LI Xiaojian
摘要:
针对现有恶意软件分类方法融合的静态特征维度高、特征提取耗时、Boosting算法对大量高维特征样本串行训练时间长的问题,提出一种基于静态特征融合的分类方法。提取原文件和其反编译的Lst文件的灰度图像素特征、原文件的结构特征和Lst文件的内容特征,对特征融合和分类。在训练集采样时启用GOSS算法减少对训练样本的采样,使用LightGBM作为分类器,该分类器通过EFB对互斥特征降维。实验证明在三类特征融合下分类准确率达到了97.04%,通过启用GOSS采样减少了29%的训练时间,在分类效果上,融合的特征优于融合Opcode n-gram的特征,LightGBM优于传统深度学习和机器学习算法。