计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (12): 65-74.DOI: 10.3778/j.issn.1002-8331.2103-0171

• 热点与综述 • 上一篇    下一篇

航空器轨迹预测技术研究综述

徐正凤,曾维理,羊钊   

  1. 南京航空航天大学 民航学院,南京 211106
  • 出版日期:2021-06-15 发布日期:2021-06-10

Survey of Civil Aircraft Trajectory Prediction

XU Zhengfeng, ZENG Weili, YANG Zhao   

  1. College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
  • Online:2021-06-15 Published:2021-06-10

摘要:

航空器轨迹预测是流量管理、冲突检测和解脱、航空器进场排序以及异常行为监测等空中交通管理技术的基础。关于航空器轨迹预测的研究产生了许多经典的方法和应用领域。对研究航迹预测问题的背景和意义进行概述,并从数据库、基础流程和预测关键技术三个方面介绍了有关航迹预测的基础知识。其中数据库包括航空器性能数据库、航空器监视数据库和气象数据库,基础流程包括准备、预测、更新和输出四个模块,预测关键技术总结并列举了状态估计模型、动力学模型和机器学习模型三类方法的典型模型。对航迹预测系统模型进行具体分析时,进一步列举三类方法的主要研究成果并归纳各类方法的特点。对航迹预测在空中交通管理中的具体应用进行分析,包括冲突检测、到达管理和流量管理等。总结并指出了目前航迹预测问题所面临的挑战和未来的发展方向。

关键词: 航迹预测, 状态估计, 飞机意图, 性能模型, 环境模型, 机器学习

Abstract:

Aircraft trajectory prediction is the basis of air traffic management technologies such as flow management, conflict detection and resolution, aircraft approach sequencing, and abnormal behavior monitoring. There are many classic methods and application fields in the research of aircraft trajectory prediction. The background and significance of the research problem are summarized, and the basic knowledge of trajectory prediction is introduced from the database, basic process and key prediction technology. The databases include aircraft performance database, aircraft monitoring database and meteorological database. The basic processes include four modules of preparation, prediction, update, and output. The key prediction technologies summary and list typical models of three methods:state estimation model, dynamic model and machine learning model. When analyzing the models in detail, the main research results of the three methods are further listed and the characteristics of each method are summarized. The specific application of trajectory prediction in air traffic management is analyzed, including conflict detection, arrival management and flow management, etc. The challenges faced by the current trajectory prediction problem and the future development direction are summarized and pointed out.

Key words: trajectory prediction, state estimation, aircraft intent, performance model, environment model, machine learning