计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (12): 75-85.DOI: 10.3778/j.issn.1002-8331.2006-0011
周新,邹海
ZHOU Xin, ZOU Hai
摘要:
针对基本樽海鞘群算法收敛速度慢、收敛精度低、易陷入局部最优的缺点,提出了一种融合黄金正弦混合变异的自适应樽海鞘群算法AGHSSA(Adaptive Salp Swarm Algorithm with Golden Sine Algorithm and Hybrid Mutation)。该算法引入了自适应变化的权重因子以加强精英个体的引导作用,提升收敛速度与精度。通过黄金正弦算法优化领导者位置更新方式,增强算法的全局搜索和局部开发能力。融合邻域重心反向学习与柯西变异对最优个体位置进行扰动,提升算法跳出局部最优的能力。通过对12个基准测试函数进行仿真实验来评估改进算法的寻优能力,实验结果表明,改进算法能显著提升寻优速度和精度,并且具备较强的跳出局部最优的能力。