计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (11): 140-147.DOI: 10.3778/j.issn.1002-8331.2007-0450
康月,薛惠珍,华斌
KANG Yue, XUE Huizhen, HUA Bin
摘要:
利用BERT预训练模型的优势,将句法特征与BERT词嵌入模型融入到深度学习网络中,实现细粒度的商品评价分析。提出一种基于深度学习的两阶段细粒度商品评价情感分析模型,利用融合句法特征与BERT词嵌入的BILSTM-CRF注意力机制模型提取用户评论中的商品实体、属性与情感词;运用BILSTM模型对提取的结果进行情感分析。在SemEval-2016 Task 5和COAE Task3商品评价数据集上的特征提取F1值达到88.2%,分别高出BILSTM模型、BILSTM-CRF模型4.8个百分点、2.3个百分点;情感分类精度达到88.5%,比普通的RNN高出8个百分点,比支持向量机、朴素贝叶斯等传统机器学习方法高出15个百分点。通过模型的复杂度分析,进一步证明融合句法特征与BERT词嵌入后的深度学习模型,在细粒度商品评价情感分析上的优势。