计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (20): 206-211.DOI: 10.3778/j.issn.1002-8331.2001-0236
陆建波,谢小红,李文韬
LU Jianbo, XIE Xiaohong, LI Wentao
摘要:
传统的服装多类别分类方法主要是人工提取图像的颜色、纹理、边缘等特征,这些人工选取特征方法过程繁琐且分类精度较低。深度残差网络可通过增加神经网络的深度获得较高的识别精度被广泛地应用于各个领域。为提高服装图像识别精度问题,提出一种改进深度残差网络模型:改进残差块中卷积层、调整批量归一化层与激活函数层中的排列顺序;引入注意力机制;调整网络卷积核结构。该网络结构在标准数据集Fashion-MNIST和香港中文大学多媒体实验室提供的多类别大型服装数据集(DeepFashion)上进行测试,实验结果表明,所提出的网络模型在服装图像识别分类精度上优于传统的深度残差网络。