计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (13): 20-32.DOI: 10.3778/j.issn.1002-8331.2002-0051
张福玲,张少敏
ZHANG Fuling, ZHANG Shaomin
摘要:
肺癌是世界上死亡率最高的癌症,通过胸部CT影像检测肺结节对肺癌早期诊断和治疗意义重大。为了减轻放射科医生的工作量以及同时减少误诊率和漏诊率,研究人员提出了计算机辅助检测(CAD)系统辅助放射科医生检测和诊断肺结节。目前,研究人员正在尝试不同的深度学习技术,以提高计算机辅助诊断系统在基于CT图像的肺癌筛查中的性能。这项工作回顾了作为肺癌检测的CAD系统目前典型的深度学习的算法和框架,主要从数据集介绍、2D深度学习方法、3D深度学习方法、数据不平衡问题的处理、模型训练方法以及模型可解释性这六个方面进行介绍。最后,对各个方法的主要特点和算法性能进行了综合比较分析,并对如何提高结节检测性能进行了展望。