计算机工程与应用 ›› 2018, Vol. 54 ›› Issue (7): 213-220.DOI: 10.3778/j.issn.1002-8331.1611-0051
邹维宝1,于昕玉1,麦 超2
ZOU Weibao1, YU Xinyu1, MAI Chao2
摘要: 受限玻尔兹曼机(Restricted Boltzmann Machine,RBM)是一种有效的特征提取算法,受视觉皮层稀疏表示的启发,人们试图将稀疏这一概念引入到RBM中,以期学习到原始数据的稀疏表示,提高其特征提取性能。将Lorentz函数引入到RBM中,作为RBM的稀疏约束正则项,构建基于Lorentz函数的稀疏约束RBM模型,将其称之为LRBM模型。对该模型的特征提取性能进行了可视化评价,同时对稀疏度和分类率进行了实验分析;最后将多个LRBM叠加,构造基于LRBM的深度置信网模型并分析该深度网络的性能。实验表明,LRBM模型有效地提取了数据集中的特征信息,在分类效果上较RBM平均提高了2%左右,增强了目标分类的可靠性。