计算机工程与应用 ›› 2018, Vol. 54 ›› Issue (16): 101-106.DOI: 10.3778/j.issn.1002-8331.1802-0095

• 网络、通信与安全 • 上一篇    下一篇

基于循转函数的RFID标签所有权转移协议

丘洪伟1,简碧园2   

  1. 1.广州工商学院 计算机科学与工程系,广州 510850
    2.广州科技职业技术学院 信息工程学院,广州 510550
  • 出版日期:2018-08-15 发布日期:2018-08-09

RFID tag ownership transfer protocol based on wheel function

QIU Hongwei1, JIAN Biyuan2   

  1. 1.Department of Computer Science and Engineering, Guangzhou College of Technology and Business, Guangzhou 510850, China
    2.School of Electronic and?Computer Engineering, Guangzhou Vocational College of Science and Technology, Guangzhou 510550, China
  • Online:2018-08-15 Published:2018-08-09

摘要: 针对现有无线射频识别低成本无源标签在其生命周期中所有权不断转移的安全性问题,设计了一种新的基于循转函数的RFID标签所有权转移协议。在随机预言机模型下,定义标签所有权转移攻击模型、安全模型,利用攻击游戏证明协议的安全性。协议设计了完整三方认证过程,利用循转函数算法、交叉位运算以及二次剩余算法等加密通信数据并实现轻量级标准,而后新所有者和标签之间秘密信息的二次同步更新机制,保证了协议的前、后向隐私安全。最后给出多协议之间的标签计算量、通信量、存储量成本对比,表明协议满足安全、低成本特性。

关键词: 无线射频识别(RFID), 低成本, 所有权, 转移, 循转函数, 随机预言机, 攻击游戏证明, 二次剩余

Abstract: Aiming at the security issues of the current wireless RFID low-cost passive tags whose ownership is continuously transferred during their life cycle, a new RFID tag ownership transfer protocol based on wheel function is designed. Under the random oracle model, this protocol defines the tag ownership transfer attack model and security model, and finally uses the game to prove the security of the protocol. The protocol designs a complete three-party authentication process, and uses encrypted functional data such as wheel function, cross-bit operation and quadratic residue algorithm to implement lightweight standards. Then, the secondary synchronization update mechanism of secret information between the new owner and tag ensures the forward and backward privacy of the protocol. At last, the comparison of the number of tags, traffic and storage cost between multi protocols shows that the protocol meets the security and low cost characteristics.

Key words: Radio Frequency Identification(RFID), low cost, ownership, transfer, wheel function, random oracle, attack game proof, quadratic residue