计算机工程与应用 ›› 2019, Vol. 55 ›› Issue (9): 197-202.DOI: 10.3778/j.issn.1002-8331.1801-0072
刘鹏飞1,2,3,4,赵怀慈1,3,4,刘明第1,3,4
LIU Pengfei1,2,3,4, ZHAO Huaici1,3,4, LIU Mingdi1,3,4
摘要: 单幅图像超分辨率(Super Resolution,SR)重建,是计算机视觉领域的一个经典问题,其目的在于从一个低分辨率图像得到一个高分辨率图像。目前的卷积神经网络重建算法只有三层结构,浅层结构在处理内部结构复杂的数据时,会出现表征能力不足的问题,因此提出了一个基于特征转移的八层卷积神经网络结构来实现图像超分辨率重建。针对不同的测试集,提出的卷积神经网络模型取得了更佳的超分辨率结果,不管是在主观视觉上还是在客观评价指标上均有明显改善,把数据集图像放大3倍时,对于不同算法的对比图像,该算法的峰值信噪比最高,而且在清晰度方面尤其是图像纹理边缘得到了增强。实验结果证明了基于迁移转移的八层卷积神经网络对图像超分辨率重建的有效性,且网络的收敛速度更快,在精细度方面具有更高的优势。