计算机工程与应用 ›› 2017, Vol. 53 ›› Issue (21): 214-218.DOI: 10.3778/j.issn.1002-8331.1604-0408

• 工程与应用 • 上一篇    下一篇

特征聚类在油田测试方案优化中的研究

李洪奇1,2,张艳丽1,2,杨景海3,朱丽萍1,2,赵艳红1,2,裴建亚3   

  1. 1.中国石油大学 地球物理与信息工程学院,北京 102249
    2.中国石油大学 油气数据挖掘北京市重点实验室,北京 102249
    3.大庆油田测试技术服务分公司,黑龙江 大庆 163000
  • 出版日期:2017-11-01 发布日期:2017-11-15

Research on optimization of oilfield test scheme based on characteristic clustering

LI Hongqi1,2, ZHANG Yanli1,2, YANG Jinghai3, ZHU Liping1,2, ZHAO Yanhong1,2, PEI Jianya3   

  1. 1.College of Geophysics and Information Engineering, China University of Petroleum, Beijing 102249, China
    2.Beijing Key Lab of Data Mining for Petroleum Data, China University of Petroleum, Beijing 102249, China
    3.Daqing Oilfield Testing Technology Services Branch Offices, Daqing, Heilongjiang 163000, China
  • Online:2017-11-01 Published:2017-11-15

摘要: 针对油田注产剖面动态测试在选井上没有一个合适参考标准的问题,提出利用基于特征的聚类将油井按照生产状况进行先聚类再分类的方法。首先对油井生产时间序列数据选择处理,然后提取序列特征进行聚类,并把聚类结果划分等级,最后制定油田测试优化方案。实验结果表明,提取的时间序列特征能很好地表征油井生产波动情况,获得较好地分类效果,对指导油田测试有重要意义。

关键词: 特征, 聚类和分类, 时间序列, 油田测试优化

Abstract: Note the oilfield production cross section in the dynamic test in the well election does not have a suitable reference standard issue, the paper proposes a well production division method in accordance with the feature-based clustering and the classification. First, the method selects and processes the well production time series data. And then the characteristic sets are extracted for clustering from time series data. In the end the clustering results develop the oilfield test optimization. Experimental result shows that the characteristics extracted from time series can be a good representation of the fluctuations in oil production, obtain better classification results and be important for guiding the oilfield test.

Key words: characteristics, clustering and classification, time series, the oilfield test optimization