计算机工程与应用 ›› 2016, Vol. 52 ›› Issue (4): 115-120.

• 模式识别与人工智能 • 上一篇    下一篇

基于SVM混合集成的信用风险评估模型

陈  云1,2,石  松1,2,潘  彦1,2,俞  立2   

  1. 1.上海财经大学 公共经济与管理学院,上海 200433
    2.上海市金融信息技术研究重点实验室,上海 200433
  • 出版日期:2016-02-15 发布日期:2016-02-03

Hybrid ensemble approach for credit risk assessment based on SVM

CHEN Yun1,2, SHI Song1,2, PAN Yan1,2, YU Li2   

  1. 1.School of Public Economics and Management, Shanghai University of Finance and Economics, Shanghai 200433, China
    2.Shanghai Key Laboratory of Financial Information Technology, Shanghai 200433, China
  • Online:2016-02-15 Published:2016-02-03

摘要: 准确的信用风险评估可以降低金融机构的风险。为了进一步提高信用风险评估模型的预测准确率,将基于SVM的集成学习模型应用到信用风险评估问题中,提出了一种混合集成策略,称作RSA。RSA是随机子集模型和AdaBoost两种流行策略的合成,能提高组合成员分类器的多样性,从而提高集成学习模型的预测准确率。模型在两组公开信用数据集上进行了应用,实验结果表明基于RSA的SVM的集成学习模型可以作为信用风险评估的有效模型。

关键词: 信用风险评估, 支持向量机(SVM), 集成学习, AdaBoost, 随机子集模型

Abstract: Accurate credit risk assessment is very important for risk management of financial institutions. In order to further improve the accuracy of credit risk assessment model, a hybrid ensemble approach, RSA-SVM, is proposed. This approach is a SVM-based ensemble learning method, combined with two popular ensemble strategies, random subspace model and AdaBoost, in order to improve the diversity of base learners, and get a more accurate ensemble learning model. This model is applied on two public credit data sets, and the experimental results show that the RSA-SVM is a more effective model for credit risk assessment.

Key words: credit risk assessment; Support Vector Machine(SVM), ensemble learning, AdaBoost, random subspace model