计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (7): 247-254.DOI: 10.3778/j.issn.1002-8331.1901-0360
陈菲雨,岳文斌,饶颖露,邢金昊,马晓静
CHEN Feiyu, YUE Wenbin, RAO Yinglu, XING Jinhao, MA Xiaojing
摘要:
四旋翼无人机(Unmanned Aerial Vehicle,UAV)在航拍、测绘、环境监测、快递等航空领域的广泛应用,对四旋翼无人机的可用性和可靠性提出了更高的要求,而其实现自主精准降落的功能是必不可少的。对目标进行快速鲁棒性跟踪是实现降落的重要基础,TLD(Tracking Learning Detector)算法为这一问题提供了一种有效的解决办法,虽然许多学者对其进行了研究并对传统的TLD算法进行了改进,但算法的跟踪精度及速度仍然难以满足无人机的降落要求。提出了一种基于TLD框架的目标跟踪算法来实现无人机与特定降落目标之间的相对定位。该算法在TLD框架下,提出一种基于目标形状特征自主确定降落目标的算法,提高了降落流程的自主性;用核相关滤波器(Kernelized Correlation Filter,KCF) 实现了TLD框架中的跟踪器,提高了算法的实时性、精准度及鲁棒性;同时在降落过程中采用一种基于方向梯度直方图特征(Histogram of Gradient,HOG)和支持向量机(Support Vector Machine,SVM) 的目标识别方法,以实现目标检测自矫正,保证长时间准确跟踪目标。在七类模拟无人机进行降落的视频集下验证了该算法,与其他三种跟踪算法进行对比,并进行实际降落测试。测试结果表明,该算法的鲁棒性和精准度均优于其他算法,处理速度可达到31.47?f/s,故而在TLD框架下采用核相关滤波器作为跟踪器,对跟踪及检测结果进行有效融合并提高算法实时性的同时,增加的检测自矫正环节保证了长时间跟踪的准确度,从而有效地实现了无人机全自主精准降落。