计算机工程与应用 ›› 2015, Vol. 51 ›› Issue (12): 189-193.
刘 薇,戴平阳,李翠华
LIU Wei, DAI Pingyang, LI Cuihua
摘要: 为了能更加准确鲁棒地跟踪目标,提出了特征加权融合的在线多示例学习跟踪算法(WFMIL)。WFMIL在多示例学习框架下分别训练两种特征(Hog和Haar)分类器。在跟踪过程中,通过线性运算融合成一个强分类器,同时在学习过程中对正包中的示例引入权重。实验结果统计表明WFMIL能很好地解决目标漂移问题,并且对目标遮挡、运动突变、光照变化以及运动模糊等具有较好的鲁棒性。