计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (24): 135-143.DOI: 10.3778/j.issn.1002-8331.2105-0377
邱守猛,谷宇章,袁泽强
QIU Shoumeng, GU Yuzhang, YUAN Zeqiang
摘要:
基于孪生网络的目标跟踪算法将跟踪问题建模为目标特征和搜索区特征之间的匹配问题。匹配程度通常是根据二者特征之间的相关响应来衡量。目前该衡量方式仍存在以下局限:一方面,对目标的不同区域使用的是相同的特征提取器,没有考虑到目标内部和轮廓处的区别;另一方面,在特征之间相关性的求解过程中,模板空间结构是固定的,无法很好地应对目标形变时的情况,鲁棒性较差。为解决上述问题,提出了一种双分支孪生网络目标跟踪算法SiamDAH(Double Adjust Head Siamese Network for Object Tracking),其中双分支结构旨在考虑目标内部区域和轮廓处的表征需求差异。此外,提出了一种改进的逐像素相关模块,有效降低了传统相关操作时模板结构固定带来的问题。在GOT-10k数据集上的实验结果表明,提出的算法在AO、SR0.5、SR0.75指标上较基准算法分别实现了3.4%、7.0%、2.3%的提升。在NVIDIA RTX 2080Ti上速度可达90 frame/s。