计算机工程与应用 ›› 2014, Vol. 50 ›› Issue (12): 166-168.

• 图形图像处理 • 上一篇    下一篇

基于自适应阈值的运动目标检测方法

张  永,刘巧玲   

  1. 兰州理工大学 计算机与通信学院,兰州 730050
  • 出版日期:2014-06-15 发布日期:2015-05-08

Moving target detection method based on adaptive threshold

ZHANG Yong, LIU Qiaoling   

  1. School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, China
  • Online:2014-06-15 Published:2015-05-08

摘要: 针对混合高斯背景减除法在运动目标检测应用中存在的不足,进行了以下两个方面的改进:第一,通过在混合高斯模型匹配中引入自适应匹配阈值的方法,解决由噪声或光照引起的误判问题;第二,在模型学习方面,采用不同的权重学习速率以检测静态背景区域,并提高模型的自适应性。实验结果表明,与传统的混合高斯模型的运动目标检测方法相比,改进后的方法在背景误判、场景适应性方面都有所改善。

关键词: 混合高斯模型, 背景减除法, 目标检测, 误检测点

Abstract: This paper makes improvements on moving target detection method which is based on mixture Gaussian model, specifically in two areas:the use of adaptive matching threshold solves the problem of misdetection of moving targets caused by noise or illumination change; and in terms of model learning, it uses different learning rate to detect static background areas, improving the adaptiveness of model. Compared to the moving targets detection approach based on conventional mixture Gaussian model, the improved methods have significantly solved the problems of misdetection of moving object, and the adaptiveness of model.

Key words: Mixture Gaussian Model(GMM), background subtraction, object detection, false detection