计算机工程与应用 ›› 2013, Vol. 49 ›› Issue (21): 133-137.
包 旭1,杜 凯2,田 浩2
BAO Xu1, DU Kai2, TIAN Hao2
摘要: 传统颜色直方图的Mean Shift(MS)算法只考虑了目标颜色的统计信息,不包含目标的空间信息,当目标颜色与背景颜色相近或目标对象发生光照变化时,容易导致不准确跟踪或跟踪丢失。针对该问题,提出了一种融合改进MS和SURF的跟踪算法。改进的MS算法根据目标对象的最新外接矩形尺寸,确定对象的分块方法,根据各块的Bhattacharyya系数值,确定各块的权重系数,获得初步的跟踪结果;采用SURF特征匹配和校正的方法对其初步跟踪结果进行调整;采用线性加权的方法融合改进的MS和SURF跟踪结果,得出最终的跟踪结果。实验表明,提出的融合改进MS和SURF的跟踪算法,比传统的MS算法和固定分块的MS算法都具有更好的跟踪性能。