计算机工程与应用 ›› 2013, Vol. 49 ›› Issue (21): 138-140.

• 图形图像处理 • 上一篇    下一篇

利用新特征空间的SAS图像目标分类算法

丁雪洁,解  恺,刘  维,刘纪元,江泽林   

  1. 中国科学院 声学研究所,北京 100190
  • 出版日期:2013-11-01 发布日期:2013-10-30

Object classification algorithm of SAS image using new feature space

DING Xuejie, XIE Kai, LIU Wei, LIU Jiyuan, JIANG Zelin   

  1. Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China
  • Online:2013-11-01 Published:2013-10-30

摘要: 通过分析合成孔径声纳图像中不同目标统计特性参数间的差异,提出了一种利用新特征空间的SAS图像目标分类算法。该算法用马尔可夫随机场分割算法找到感兴趣区域,提取阴影的几何参数和目标的归一化中心矩,并且将目标、阴影、背景之间统计特性的分布参数之差与前两者构成新的特征空间。利用k-均值聚类算法对三类目标进行分类。合成孔径声纳湖试数据验证了算法的有效性。

关键词: 合成孔径声纳, 马尔可夫随机场, 特征提取, k-均值聚类

Abstract: An algorithm of SAS image object classification using a new feature space is proposed on the basis of analyzing difference of statistical features. In the proposed algorithm, Markov random field is used to segment the object and shadow from background, and then the shadow geometrical features and object central moments are computed. Moreover, the differences of statistical parameters of every part are estimated to make up a new feature space with the two mentioned previously. k-mean clustered algorithm is applied to classification. The validity of the proposed algorithm is proven by SAS lake-trial.

Key words: Synthetic Aperture Sonar(SAS), Markov random field, feature extraction, k-mean cluster