计算机工程与应用 ›› 2013, Vol. 49 ›› Issue (21): 141-144.

• 图形图像处理 • 上一篇    下一篇

基于关联图划分的Kmeans算法

李正兵1,2,罗  斌1,2,翟素兰1,3,4,涂铮铮1,4   

  1. 1.安徽大学 计算机科学与技术学院,合肥 230039
    2.安徽省工业图像处理与分析重点实验室,合肥 230039
    3.安徽大学 数学科学学院,合肥 230039
    4.安徽大学 计算智能与信号处理教育部重点实验室,合肥 230039
  • 出版日期:2013-11-01 发布日期:2013-10-30

Kmeans algorithm based on partition of correlational graph

LI Zhengbing1,2, LUO Bin1,2, ZHAI Sulan1,3,4, TU Zhengzheng1,4   

  1. 1.School of Computer Science & Technology, Anhui University, Hefei 230039, China
    2.Anhui Provincial Key Lab for Industrial Image Processing and Analysis, Hefei 230039, China
    3.School of Mathematical Sciences, Anhui University, Hefei 230039, China
    4.Key Lab of Intelligent Computing and Signal Processing of Ministry of Education, Anhui University, Hefei 230039, China
  • Online:2013-11-01 Published:2013-10-30

摘要: Kmeans是最典型的聚类算法,因其简洁、快速而被广泛使用。针对传统Kmeans算法对初始聚类中心敏感和聚类参数k难以确定的问题,提出了一种基于关联图划分的Kmeans算法。该算法能够有效地根据数据的分布特性选取初始聚类中心,能够在指定的数据密集程度下自适应确定聚类数目。有效性实验表明上述改进的Kmeans算法具有较高的准确率和稳定性。

关键词: K均值, 关联图, 初始聚类中心, 相似度矩阵

Abstract: Kmeans is the most typical clustering algorithm, which is widely used because it is concise, fast. As the traditional Kmeans is sensitive to initial clustering centers and the value of clustering parameter k is difficult to establish, this paper proposes an algorithm based on the partition of correlational graph. The algorithm can select initial clustering centers globally according to the distribution characteristics of the given data; the algorithm can determine the number of cluster automatically according to intensive degree of the given data. Effective experiments show that the algorithm has great accuracy and stability.

Key words: Kmeans, relation graph, initial clustering center, similarity matrix