计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (8): 179-182.

• 图形、图像、模式识别 • 上一篇    下一篇

粘连蚕卵计数方法的研究

于 杰1,肖国强2,代 毅2   

  1. 1.西南大学 电子信息工程学院,重庆 400715
    2.西南大学 计算机与信息科学学院,重庆 400715
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-03-11 发布日期:2011-03-11

Study on counting algorithm for overlapping silkworm ovum image

YU Jie1,XIAO Guoqiang2,DAI Yi2   

  1. 1.School of Electronic and Information Engineering,Southwest University,Chongqing 400715,China
    2.School of Computer and Information Science,Southwest University,Chongqing 400715,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-03-11 Published:2011-03-11

摘要: 在蚕卵图像计数研究中,传统的方法在计数前需要对粘连蚕卵进行分离。但是蚕卵图像中存在的粘连或者部分重叠现象常常导致分割的不完整,给图像的后续分析处理带来了很大的麻烦。针对这一问题,提出了一种基于网格模型的粘连蚕卵计数方法,该方法利用机器学习的策略有效地避免了分割的过程,使用SVM直接对蚕卵进行计数。另外还提取出一种有效的纹理特征从而提高了SVM输出的准确率。实验将提出的基于网格的计数方法同传统的基于分割的方法比较,结果表明了基于网格计数方法具有良好的鲁棒性和准确性。

关键词: 计数, 分割, 支持向量机(SVM), 纹理特征, 网格模型

Abstract: In the silkworm ovum image,the traditional method on counting the number of the silkworm ovum needs separation of these objects.However,there are many overlapping or conglutinating silkworm ova existing in the image,and it leads to the half-baked situation for segmentation and much trouble for the following process.To solve this problem,a new algorithm based on mesh model is proposed.It makes full use of machine-learning to avoid the process of segmentation,and the counting result is given directly by SVM.It also gives an extraction of effective texture feature and improves the precision of SVM.Compared with the traditional algorithm based on segmentation,experimental results show the high performance in both robustness and precision of the proposed method.

Key words: counting, segmentation, Support Vector Machines(SVM), texture feature, mesh model