计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (33): 52-54.

• 研究、探讨 • 上一篇    下一篇

广义支持向量机的多项式光滑函数法

刘叶青1,2,刘三阳2,谷明涛3   

  1. 1.河南科技大学 数学与统计学院,河南 洛阳 471003
    2.西安电子科技大学 数学科学系,西安 710071
    3.中国人民解放军96251部队
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-11-21 发布日期:2011-11-21

Polynomial smooth functions method for generalized support vector machine

LIU Yeqing1,2,LIU Sanyang2,GU Mingtao3   

  1. 1.School of Mathematics and Statistics,Henan University of Science & Technology,Luoyang,Henan 471003,China
    2.Department of Mathematical Sciences,Xidian University,Xi’an 710071,China
    3.Unit 96251 of PLA
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-11-21 Published:2011-11-21

摘要: 为了求解广义支持向量机(GSVM)的优化问题,将带有不等式约束的原始优化问题转化为无约束优化问题,由于此无约束优化问题的目标函数不光滑,所以引入一族多项式光滑函数进行逼近,实验中可以根据不同的精度要求选择不同的逼近函数。用BFGS算法求解。实验结果表明,该算法和已有的GSVM的求解算法相比,更快地获得了更高的测试精度,更适合大规模数据集的训练。因此给出的GSVM的求解算法是有效的。

关键词: 支持向量机, 广义支持向量机, 模式识别, 分类, 光滑函数, 多项式

Abstract: To solve the optimization problem of Generalized Support Vector Machine(GSVM),the primal optimization problem with inequality constraints is transformed into the unconstraint optimization problem,whose objective function is nonsmooth,therefore a series of polynomial smooth functions is introduced to approach the objective function.Different polynomial functions can be used according to the corresponding accuracy demand.The model is solved by the BFGS algorithm.Experimental results show,compared with the existing algorithms used for solving the optimization problem of GSVM,the proposed algorithm achieves higher testing accuracy more quickly and is useful for large-scale data.Therefore,the proposed algorithm is effective.

Key words: Support Vector Machine(SVM), generalized support vector machines, pattern recognition, classification, smooth function, polynomial