计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (33): 55-58.

• 研究、探讨 • 上一篇    下一篇

求解非线性方程组的BFGS差分进化算法

刘利斌1,欧阳艾嘉2,许卫明3,李肯立2   

  1. 1.池州学院 数学与计算机科学系,安徽 池州 247000
    2.湖南大学 信息科学与工程学院,长沙 410082
    3.嘉兴学院 数理与信息工程学院,浙江 嘉兴 314001
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-11-21 发布日期:2011-11-21

BFGS-based differential evolution for solving systems of nonlinear functions

LIU Libin1,OUYANG Aijia2,XU Weiming3,LI Kenli2   

  1. 1.Department of Mathematics and Computer Science,University of Chizhou,Chizhou,Anhui 247000,China
    2.School of Information Science and Engineering,Hunan University,Changsha 410082,China
    3.College of Mathematics,Physics and Information Engineering,Jiaxing University,Jiaxing,Zhejiang 314001,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-11-21 Published:2011-11-21

摘要: 针对差分进化算法进化后期收敛缓慢和稳定性不强的缺陷,将BFGS算法插入差分进化算法当中,提出了一种BFGS差分进化算法,用来求解非线性方程组。通过5个非线性方程组和一个工程实例的实验,说明:算法收敛精度较高、收敛速度较快、鲁棒性强、收敛成功率高,是一种较好的解决非线性方程组的方法。

关键词: 非线性方程组, BFGS算法, 差分进化算法

Abstract: BFGS-Based Differential Evolution algorithm(BDE),which combines the advantages of the methods of BFGS and Differential Evolution(DE),is put forward to solve systems of nonlinear functions for the shortcoming of DE is slow convergence and not strong stability of the late evolution.The experiment results show that the proposed approach has the advantages of robustness,higher precision and faster speed and higher success rate in the convergence by the test of five systems of nonlinear functions and an engineering example.It is a good algorithm for solving systems of nonlinear functions.

Key words: systems of nonlinear functions, BFGS algorithm, differential evolution