计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (16): 144-146.

• 数据库、信号与信息处理 • 上一篇    下一篇

用户显意识下的多重态度个性化推荐算法

夏秀峰,代 沁,丛丽晖   

  1. 沈阳航空工业学院 计算机学院,沈阳 110136
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-06-01 发布日期:2011-06-01

Personalized recommendation algorithm based on multi-attribute model of attitude of user salient belief

XIA Xiufeng,DAI Qin,CONG Lihui   

  1. School of Computer,Shenyang Institute of Aeronautical Engineering,Shenyang 110136,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-06-01 Published:2011-06-01

摘要: 个性化推荐技术在电子商务系统中得到了广泛的应用。针对现有商品特征算法不能反映出用户对商品特征认识的差异问题,提出了一种用户显意识下的多重态度个性化推荐算法,引入显意识及多重态度的权值,从不同角度去描述消费者心理特征,使推荐结果更符合用户的需求。实验对比结果表明,用户显意识下的多重态度个性化推荐算法能够提高商品特征推荐算法的推荐精度。

关键词: 商品特征, 个性化推荐, 显意识, 多重态度

Abstract: Personalized recommendation technology has been widely applied in e-commerce.For the deficiency of the existing algorithms of product features can not reflect the different understanding of the same product between users,this paper presents a personalized recommendation algorithm based on multi-attribute model of attitude of user salient belief,user salient belief and multi-attribute model of attitude-based data weight are proposed.The algorithm describes user’s psychology from different view,for this reason,the recommendation result is more satisfied user’s needs.Experimental results show that,the proposed algorithm outperforms the traditional algorithm based on product features algorithm.

Key words: product features, personalized recommendation, salient belief, multi-attribute model of attitude