计算机工程与应用 ›› 2019, Vol. 55 ›› Issue (16): 130-137.DOI: 10.3778/j.issn.1002-8331.1812-0400
王永康,袁卫华,张志军,温鹏
WANG Yongkang, YUAN Weihua, ZHANG Zhijun, WEN Peng
摘要: 随着个性化推荐技术的发展,推荐系统面临着越来越多的挑战。传统的推荐算法通常存在数据稀疏性和推荐精度低等问题。针对以上问题,提出了一种融合时间隐语义填充和子群划分的推荐算法[K]-TLFM(Time Based Latent Factor Model Integrated with [k]-means)。该算法利用融合时间因素的隐语义模型对原始用户物品评分矩阵缺失项进行填充,避免了用全局平均值或者用户/物品平均值补全矩阵带来的误差,有效缓解了数据稀疏性问题,同时融合时间因素有效地刻画了用户偏好随时间的变化;完成评分矩阵缺失项填充后,基于二分[k]-means聚类算法将偏好、兴趣特征相似的对象划分到同一个子群中,在目标用户所属的子群中基于选定的协同过滤算法为用户产生推荐列表,提高了推荐效率和准确性。在MovieLens和Netflix数据集上对该算法的推荐性能进行了对比实验,结果表明该算法具有更高的推荐精度。