计算机工程与应用 ›› 2018, Vol. 54 ›› Issue (3): 30-39.DOI: 10.3778/j.issn.1002-8331.1710-0253
刘 伟1,刘柏嵩1,王洋洋2
LIU Wei1, LIU Baisong1, WANG Yangyang2
摘要: 进入大数据时代,信息超载是互联网用户面临的一个严重的问题,个性化推荐是解决此问题的一个非常有潜力的办法。在学术领域,学术资源个性化推荐是解决信息超载的有效途径,其为用户推荐符合其兴趣的个性化学术信息。从个性化推荐过程的用户建模、推荐对象建模和推荐策略等三个模块角度对现有学术资源个性化推荐研究进行了探讨。针对目前广泛应用的学术资源个性化推荐方法,包括基于内容的推荐、协同过滤推荐和基于网络结构的推荐等,总结其研究的关键点和存在问题,并对学术资源个性化推荐的研究趋势进行了预测。