计算机工程与应用 ›› 2008, Vol. 44 ›› Issue (16): 157-159.
王洪波,朱启兵
WANG Hong-bo,ZHU Qi-bing
摘要: 镇动信号的趋势预测是设备状态监测与故障诊断中的一个重要内容。随着运行设备的非线性、非平稳特点越来越明显,传统的数学建摸预报方法已不能满足设备的复杂化和现代化要求。提出了一种基于经验模式分解EMD(Empirical Mode Decomposition)和最小二乘支持向量机LS-SVM(Least Square Support Vector Machine)的新模型。首先,运用 EMD 将趋势时间序列自适应地分解成一系列不同尺度的本征模式分量IMF(intrinsic mode function);其次,对每个本征模式分量,采用合适的核函数和超参数构造不同的LS-SVM 进行预测;最后对各分量的预测值进行拟合得到最终的预测值。仿真实验表明,此方法与单一的LS-SVM预测法相比,具有较高的精度和较强的推广能力。