计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (3): 185-185.

• 工程与应用 • 上一篇    下一篇

一种整合多种智能计算方法的短期负荷预测模型

宋云 陈焕文 张晓华   

  1. 长沙理工大学计算机与通讯工程学院
  • 收稿日期:2006-05-29 修回日期:1900-01-01 出版日期:2007-01-21 发布日期:2007-01-21
  • 通讯作者: 宋云

A Short Term Electric Load Forecasting Model Integrating Multi Intelligent Computing Approach

yun song   

  • Received:2006-05-29 Revised:1900-01-01 Online:2007-01-21 Published:2007-01-21
  • Contact: yun song

摘要: 在电力负荷预测系统中,气象对负荷影响的处理是一个难点。本文介绍一种整合神经网络、专家系统和动态聚类多种智能方法为一体的短期/超短期预测模型,综合考虑了气象、节假日等负荷影响因素。

关键词: 负荷预测, 神经网络, 专家系统, 动态聚类

Abstract: In electric load forecasting system, how to handle load affected by weather is a difficulty. A model for short term and super short term forecasting integrating neural network, expert system and dynamic clustering is introduced here, which involves weather, festival and other load forecasting affecting factors.

Key words: load forecasting, neural network, expert system, dynamic clustering