计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (19): 336-347.DOI: 10.3778/j.issn.1002-8331.2501-0216

• 工程与应用 • 上一篇    下一篇

基于单目视觉语义地图构建的列车里程定位方法

蒋欣兰,王胜春,沈彦龙   

  1. 1.中国社会科学院大学 计算社会科学研究中心,北京 102488
    2.中国铁道科学研究院 基础设施检测研究所,北京 100081
    3.中山大学 电子与通信工程学院,广州 510275
  • 出版日期:2025-10-01 发布日期:2025-09-30

Train Mileage Positioning Method Based on Monocular Vision Semantic Map Construction

JIANG Xinlan, WANG Shengchun, SHEN Yanlong   

  1. 1.Computational Social Sciences Research Center, University of Chinese Academy of Social Sciences, Beijing 102488, China
    2.Infrastructure Inspection Research Institute, China Academy of Railway Sciences Corporation Ltd., Beijing 100081, China
    3.School of Electronics and Communication Engineering, Sun Yat-sen University, Guangzhou 510275, China
  • Online:2025-10-01 Published:2025-09-30

摘要: 针对铁路检测列车传统里程定位方法均存在的缺陷,将语义信息融合到三维重建技术中,提出了基于先验信息的单目视觉语义地图构建方法。该方法包含目标检测模块、目标跟踪模块、单目SLAM模块和点云统计处理模块,并且对铁路场景中进行三维重建所存在的主要问题分别进行优化:通过定位稳定的语义目标,来缓解尺度漂移问题;通过设定自适应阈值和筛选“三维重建一致性”良好的特征点,来缓解铁路场景模式单一和运行速度过快,所导致的特征点匹配易发生错误的问题;通过筛选本征矩阵奇异值分解的结果,来提升算法运行速度。实验结果表明,该方法是一种可行性高、便于应用推广的高精度铁路里程定位方法。对比仅依靠轮速计的里程定位,提出的方法可将检测系统的定位误差控制在1?m左右,最大误差由11.3?m降低为1.7?m,实现了检测列车精确里程定位。

关键词: 列车里程定位, 三维重建, 同步定位与制图, 语义地图

Abstract: To address the limitations of traditional mileage positioning methods used in railway inspection trains, this paper integrates semantic information into 3D reconstruction technology and proposes a monocular vision-based semantic map construction approach using prior knowledge. The method consists of modules for object detection, object tracking, monocular SLAM, and point cloud statistical processing. It optimizes key challenges in 3D reconstruction of railway scenes by mitigating the scale drift issue through locating stable semantic targets, reducing feature point matching errors caused by the uniformity of railway scene patterns and excessive train speed by setting adaptive thresholds and selecting feature points with good 3D reconstruction consistency, and enhancing the algorithm’s computational efficiency by filtering the results of the intrinsic matrix’s singular value decomposition. Experimental results demonstrate that the proposed method is highly feasible, easy to apply, and provides high-precision railway mileage positioning. Compared to mileage positioning based solely on wheel encoders, the method can limit the positioning error of the detection system to approximately 1 meter, reducing the maximum error from 11.3 meters to 1.7 meters, thereby achieving precise mileage positioning for inspection trains.

Key words: train mileage positioning, 3D construction, simultaneous localization and mapping (SLAM), semantic map