[1] TANG P B, HUBER D, AKINCI B, et al. Automatic reconstruction of as-built building information models from laser-scanned point clouds: a review of related techniques[J]. Automation in Construction, 2010, 19(7): 829-843.
[2] LI Y, IBANEZ-GUZMAN J. Lidar for autonomous driving: the principles, challenges, and trends for automotive lidar and perception systems[J]. IEEE Signal Processing Magazine, 2020, 37(4): 50-61.
[3] 代领, 宋振波, 陆建峰. 用于SLAM的点云动态物体识别[J]. 计算机工程与应用, 2024, 60(20): 312-319.
DAI L, SONG Z B, LU J F. Point cloud dynamic object recognition for SLAM[J]. Computer Engineering and Applications, 2024, 60(20): 312-319.
[4] 刘铭哲, 徐光辉, 唐堂, 等. 激光雷达SLAM算法综述[J]. 计算机工程与应用, 2024, 60(1): 1-14.
LIU M Z, XU G H, TANG T, et al. Review of SLAM based on lidar[J]. Computer Engineering and Applications, 2024, 60(1): 1-14.
[5] BI S S, YUAN C, LIU C, et al. A survey of low-cost 3D laser scanning technology[J]. Applied Sciences, 2021, 11(9): 3938.
[6] BULA J, DERRON M H, MARIETHOZ G. Dense point cloud acquisition with a low-cost Velodyne VLP-16[J]. Geoscientific Instrumentation, Methods and Data Systems, 2020, 9(2): 385-396.
[7] NEUMANN T, FERREIN A, KALLWEIT S, et al. Towards a mobile mapping robot for underground mines[C]//Proceedings of the 2014 International Joint Symposium on RobMech and AfLaT, 2014.
[8] 汪双. 基于旋转激光雷达的融合定位建图方法[D]. 绵阳: 西南科技大学, 2024.
WANG S. The method of fusion localization and mapping based on spinning[D]. Mianyang: Southwest University of Science and Technology, 2024.
[9] B?DKOWSKI J, PE?KA M. Affordable robotic mobile mapping system based on lidar with additional rotating planar reflector[J]. Sensors, 2023, 23(3): 1551.
[10] 吕佳俊, 郎晓磊, 李宝润, 等. 基于B样条的连续时间轨迹状态估计研究综述[J]. 机器人, 2024, 46(6): 743-752.
Lü J J, LANG X L, LI B R, et al. Review of continuous-time trajectory state estimation research based on B-splines[J]. Robot, 2024, 46(6): 743-752.
[11] LI X C, XIAO Y X, WANG B B, et al. Automatic targetless LiDAR camera calibration: a survey[J]. Artificial Intelligence Review, 2023, 56(9): 9949-9987.
[12] NEITZEL F. Investigation of axes errors of terrestrial laser scanners [C]//Proceedings of the 5th International Symposium Turkish-German Joint Geodetic Days, 2006.
[13] YUAN C J, LIU X Y, HONG X P, et al. Pixel-level extrinsic self calibration of high resolution LiDAR and camera in targetless environments[J]. IEEE Robotics and Automation Letters, 2021, 6(4): 7517-7524.
[14] 隋心, 王思语, 罗力, 等. 基于点云特征的改进RANSAC地面分割算法[J]. 导航定位学报, 2024, 12(1): 106-114.
SUI X, WANG S Y, LUO L, et al. Improved RANSAC ground segmentation algorithm based on point cloud features[J]. Journal of Navigation and Positioning, 2024, 12(1): 106-114.
[15] KOIDE K, OISHI S, YOKOZUKA M, et al. General, single-shot, target-less, and automatic LiDAR-camera extrinsic calibration toolbox[C]//Proceedings of the 2023 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2023: 11301-11307.
[16] PENG H C, LONG F H, DING C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1226-1238.
[17] ALEXA M, BEHR J, COHEN-OR D, et al. Computing and rendering point set surfaces[J]. IEEE Transactions on Visualization and Computer Graphics, 2003, 9(1): 3-15.
[18] ZHANG J C, GAO Y, XU Y, et al. A simple yet effective image stitching with computational suture zone[J]. The Visual Computer, 2023, 39(10): 4915-4928.
[19] FOOTE T. Tf: the transform library[C]//Proceedings of the 2013 IEEE Conference on Technologies for Practical Robot Applications. Piscataway: IEEE, 2013: 1-6.
[20] ZHANG Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334. |