
计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (23): 1-23.DOI: 10.3778/j.issn.1002-8331.2501-0066
钱慎一,付博文,李代祎,梁瑶瑶
出版日期:2025-12-01
发布日期:2025-12-01
QIAN Shenyi, FU Bowen, LI Daiyi, LIANG Yaoyao
Online:2025-12-01
Published:2025-12-01
摘要: 智能问答是从海量数据中精确、快速获取需求信息的一种关键技术。近年来,智能问答技术发展成果显著,例如,基于问题的信息提取技术、语义理解技术以及向量建模的方法等。然而,随着智能问答技术的迅速发展,人们迫切希望能够对智能问答模型有一个合理的划分方式,以方便不同领域的用户使用。为了合理划分智能问答模型,方便智能问答领域研究者的深度研究,通过对知识图谱问答领域相关文献进行调查,实现了对当前知识图谱问答关键技术的概括,包括实体链接、知识嵌入,并详细介绍了知识图谱问答的相关概念和处理流程。此外,根据方法的不同,将面向知识图谱的问答技术主要分为三大类:基于语义解析方法、基于信息检索方法和基于大语言模型的方法,介绍了其优缺点并分别针对知识图谱问答模型的评价指标进行总结。最后,针对知识图谱问答技术现存的一些问题以及未来发展的方向,提出了一些建议和思考。
钱慎一, 付博文, 李代祎, 梁瑶瑶. 面向知识图谱的问答技术研究综述[J]. 计算机工程与应用, 2025, 61(23): 1-23.
QIAN Shenyi, FU Bowen, LI Daiyi, LIANG Yaoyao. Review of Question Answering Techniques for Knowledge Graph[J]. Computer Engineering and Applications, 2025, 61(23): 1-23.
| [1] SAFADEL P, HWANG S N, PERRIN J M. User acceptance of a virtual librarian chatbot: an implementation method using IBM Watson natural language processing in virtual immersive environment[J]. TechTrends, 2023, 67(6): 891-902. [2] BA?DOO-ANU D, OWUSU ANSAH L. Education in the era of generative artificial intelligence (AI): understanding the potential benefits of ChatGPT in promoting teaching and learning[J]. Journal of AI, 2023, 7(1): 52-62. [3] ZHANG X Y, YANG Q. XuanYuan 2.0: a large Chinese financial chat model with hundreds of billions parameters[C]//Proceedings of the 32nd ACM International Conference on Information and Knowledge Management. New York: ACM, 2023: 4435-4439. [4] LOUIS A, VAN DIJCK G, SPANAKIS G. Interpretable long-form legal question answering with retrieval-augmented large language models[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2024: 22266-22275. [5] HOGAN A. SPARQL query language[J]. The Web of Data, 2020: 323-448. [6] NAM D, LEE G G. Semantic parsing with candidate expressions for knowledge base question answering[J]. arXiv:2410. 00414, 2024. [7] ACCATTOLI B, LAGO D U, VANONI G. Reasonable space for the λ?calculus, logarithmically[C]//Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science. New York: ACM, 2022: 1-13. [8] KOCAK O. A systematic literature review of web-based student response systems: advantages and challenges[J]. Education and Information Technologies, 2022, 27(2): 2771-2805. [9] ZAIB M, ZHANG W E, SHENG Q Z, et al. Conversational question answering: a survey[J]. Knowledge and Information Systems, 2022, 64(12): 3151-3195. [10] GUPTA N, SINGH S, ROTH D. Entity linking via joint encoding of types, descriptions, and context[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2017: 2681-2690. [11] FAN W F, LU P, PANG K H, et al. Linking entities across relations and graphs[J]. ACM Transactions on Database Systems, 2024, 49(1): 1-50. [12] GUELLIL I, GARCIA-DOMINGUEZ A, LEWIS P R, et al. Entity linking for English and other languages: a survey[J]. Knowledge and Information Systems, 2024, 66(7): 3773-3824. [13] BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems, 2013: 2787-2795. [14] WANG Z, ZHANG J W, FENG J L, et al. Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2014: 1112-1119. [15] LIN Y K, LIU Z Y, SUN M S, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2015: 2181-2187. [16] CHEN W R, HONG D P, ZHENG C. Learning knowledge graph embedding with entity descriptions based on LSTM networks[C]//Proceedings of the IEEE International Symposium on Product Compliance Engineering-Asia. Piscataway: IEEE, 2020: 1-7. [17] NIE H, HAN X P, SUN L, et al. Global structure and local semantics-preserved embeddings for entity alignment[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence, 2020: 3658-3664. [18] GUAN N N, SONG D D, LIAO L J. Knowledge graph embedding with concepts[J]. Knowledge-Based Systems, 2019, 164: 38-44. [19] BORDES A, USUNIER N, CHOPRA S, et al. Large-scale simple question answering with memory networks[J]. arXiv:1506.02075, 2015. [20] YIH W T, RICHARDSON M, MEEK C, et al. The value of semantic parse labeling for knowledge base question answering[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2016: 201-206. [21] TRIVEDI P, MAHESHWARI G, DUBEY M, et al. LC-QuAD: a corpus for complex question answering over knowledge graphs[C]//Proceedings of the International Semantic Web Conference. Cham: Springer International Publishing, 2017: 210-218. [22] REDDY S, CHEN D Q, MANNING C D. CoQA: a conversational question answering challenge[J]. Transactions of the Association for Computational Linguistics, 2019, 7: 249-266. [23] TALMOR A, HERZIG J, LOURIE N, et al. CommonsenseQA: a question answering challenge targeting commonsense knowledge[C]//Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2019: 4149-4158. [24] MATHEW M, KARATZAS D, JAWAHAR C V. DocVQA: a dataset for VQA on document images[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2021: 2199-2208. [25] JIN D, PAN E, OUFATTOLE N, et al. What disease does this patient have? a large-scale open domain question answering dataset from medical exams[J]. Applied Sciences, 2021, 11(14): 6421. [26] XIA F, LI B, WENG Y X, et al. MedConQA: medical conversational question answering system based on knowledge graphs[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing: System Demonstrations. Stroudsburg: ACL, 2022: 148-158. [27] PAL A, UMAPATHI L K, SANKARASUBBU M. MedMCQA: a large-scale multi-subject multi-choice dataset for medical domain question answering[C]//Proceedings of the Conference on Health, Inference, and Learning, 2022: 248-260. [28] MIHAYLOV T, CLARK P, KHOT T, et al. Can a suit of armor conduct electricity? a new dataset for open book question answering[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 2381-2391. [29] KHOT T, CLARK P, GUERQUIN M, et al. QASC: a dataset for question answering via sentence composition[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 8082-8090. [30] CHEN J Q, TANG J H, QIN J H, et al. GeoQA: a geometric question answering benchmark towards multimodal numerical reasoning[C]//Proceedings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Stroudsburg: ACL, 2021: 513-523. [31] CHEN Z Y, LI S Y, SMILEY C, et al. ConvFinQA: exploring the chain of numerical reasoning in conversational finance question answering[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2022: 6279-6292. [32] XUE S, CHEN T, ZHOU F, et al. FAMMA: a benchmark for financial domain multilingual multimodal question answering[J]. arXiv:2410.04526, 2024. [33] MILLER A, FISCH A, DODGE J, et al. Key-value memory networks for directly reading documents[J]. arXiv:1606. 03126, 2016. [34] ZHANG Y Y, DAI H J, KOZAREVA Z, et al. Variational reasoning for question answering with knowledge graph[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2018: 6069-6076. [35] JIA Z, ABUJABAL A, SAHA ROY R, et al. TempQuestions: a benchmark for temporal question answering[C]//Proceedings of the International Conference on World Wide Web 2018. New York:ACM, 2018: 1057-1062. [36] SAXENA A, CHAKRABARTI S, TALUKDAR P. Question answering over temporal knowledge graphs[J]. arXiv:2106. 01515, 2021. [37] CHEN Z Y, LIAO J Z, ZHAO X. Multi-granularity temporal question answering over knowledge graphs[C]//Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2023: 11378-11392. [38] MA J, GAO Z T, CHAI Q Y, et al. FortisAVQA and MAVEN: a benchmark dataset and debiasing framework for robust multimodal reasoning[J]. arXiv:2504.00487, 2025. [39] TALMOR A, YORAN O, CATAV A, et al. Multimodalqa: complex question answering over text, tables and images[J]. arXiv:2104.06039, 2021. [40] LU P, MISHRA S, XIA T, et al. Learn to explain: multimodal reasoning via thought chains for science question answering[C]//Advances in Neural Information Processing Systems, 2022: 2507-2521. [41] SCHWENK D, KHANDELWAL A, CLARK C, et al. A-OKVQA: a benchmark for visual question answering using world knowledge[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022: 146-162. [42] YAMAKI R, TANIGUCHI T, MOCHIHASHI D. Holographic CCG parsing[C]//Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2023: 262-276. [43] STANOJEVI? M, STEEDMAN M. Max-margin incremental CCG parsing[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 4111-4122. [44] TIAN Y H, SONG Y, XIA F. Supertagging combinatory categorial grammar with attentive graph convolutional networks[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 6037-6044. [45] BHARGAVA A, PENN G. Supertagging with CCG primitives[C]//Proceedings of the 5th Workshop on Representation Learning for NLP. Stroudsburg: ACL, 2020: 194-204. [46] LIU Y F, JI T, WU Y B, et al. Generating CCG categories[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021: 13443-13451. [47] PRANGE J, SCHNEIDER N, SRIKUMAR V. Supertagging the long tail with tree-structured decoding of complex categories[J]. Transactions of the Association for Computational Linguistics, 2021, 9: 243-260. [48] KOGKALIDIS K, MOORTGAT M. Geometry-aware supertagging with heterogeneous dynamic convolutions[C]//Proceedings of the Conference on Learning with Small Data, 2023:107-119. [49] SHI P, NG P, NAN F, et al. Generation-focused table-based intermediate pre-training for free-form question answering[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2022: 11312-11320. [50] GONG H, SUN Y W, FENG X C, et al. TableGPT: few-shot table-to-text generation with table structure reconstruction and content matching[C]//Proceedings of the 28th International Conference on Computational Linguistics, 2020: 1978-1988. [51] SONG J X, LIU F L, DING K, et al. Semantic comprehension of questions in Q&A system for Chinese language based on semantic element combination[J]. IEEE Access, 2020, 8: 102971-102981. [52] SONG L F, GILDEA D, ZHANG Y, et al. Semantic neural machine translation using AMR[J]. Transactions of the Association for Computational Linguistics, 2019, 7: 19-31. [53] TSAI S, LIANG C C, WANG H M, et al. Sequence to general tree: knowledge-guided geometry word problem solving[J]. arXiv:2106.00990, 2021. [54] FEI Z C, ZHANG Q, GUI T, et al. CQG: a simple and effective controlled generation framework for multi-hop question generation[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2022: 6896-6906. [55] DOU Z Y, PENG N Y. Zero-shot commonsense question answering with cloze translation and consistency optimization[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2022: 10572-10580. [56] WU Q Z, ZHANG Q, FU J L, et al. A knowledge-aware sequence-to-tree network for math word problem solving[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 7137-7146. [57] SU D, XU Y, DAI W L, et al. Multi-hop question generation with graph convolutional network[C]//Findings of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 4636-4647. [58] PAN L M, XIE Y X, FENG Y S, et al. Semantic graphs for generating deep questions[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 1463-1475. [59] FEI Z C, ZHANG Q, ZHOU Y Q. Iterative GNN-based decoder for question generation[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2021: 2573-2582. [60] YE X, YAVUZ S, HASHIMOTO K, et al. RNG-KBQA: generation augmented iterative ranking for knowledge base question answering[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2022: 6032-6043. [61] FERNáNDEZ-GONZáLEZ D. Transition-based semantic role labeling with pointer networks[J]. Knowledge-Based Systems, 2023, 260: 110127. [62] YIN P C, NEUBIG G. TRANX: a transition-based neural abstract syntax parser for semantic parsing and code generation[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing:System Demonstrations. Stroudsburg: ACL, 2018: 7-12. [63] WOLFSON T, GEVA M, GUPTA A, et al. Break it down: a question understanding benchmark[J]. Transactions of the Association for Computational Linguistics, 2020, 8: 183-198. [64] XIA Y, JIANG W, LYU Y, et al. A transition-based method for complex question understanding[C]//Proceedings of the 29th International Conference on Computational Linguistics, 2022: 4203-4211. [65] YU D, ZHANG S, NG P, et al. DecAF: joint decoding of answers and logical forms for question answering over knowledge bases[J]. arXiv:2210.00063, 2022. [66] ABDELAZIZ I, RAVISHANKAR S, KAPANIPATHI P, et al. A semantic parsing and reasoning-based approach to knowledge base question answering[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021: 15985-15987. [67] CHEN S, LIU Q, YU Z W, et al. ReTraCk: a flexible and efficient framework for knowledge base question answering[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System Demonstrations. Stroudsburg: ACL, 2021: 325-336. [68] DAS R, ZAHEER M, THAI D, et al. Case-based reasoning for natural language queries over knowledge bases[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2021: 9594-9611. [69] GU Y, SU Y. ArcaneQA: dynamic program induction and contextualized encoding for knowledge base question answering[C]//Proceedings of the 29th International Conference on Computational Linguistics, 2022: 1718-1731. [70] CAO S L, SHI J X, YAO Z J, et al. Program transfer for answering complex questions over knowledge bases[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2022: 8128-8140. [71] DIEFENBACH D, BOTH A, SINGH K, et al. Towards a question answering system over the semantic web[J]. Semantic Web, 2020, 11(3): 421-439. [72] HE G L, LAN Y S, JIANG J, et al. Improving multi-hop knowledge base question answering by learning intermediate supervision signals[C]//Proceedings of the 14th ACM International Conference on Web Search and Data Mining. New York: ACM, 2021: 553-561. [73] YIH W T, CHANG M W, HE X D, et al. Semantic parsing via staged query graph generation: question answering with knowledge base[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2015: 1321-1331. [74] BAO J, DUAN N, YAN Z, et al. Constraint-based question answering with knowledge graph[C]//Proceedings of the 26th International Conference on Computational Linguistics: Technical Papers, 2016: 2503-2514. [75] YU M, YIN W P, HASAN K S, et al. Improved neural relation detection for knowledge base question answering[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2017: 571-581. [76] QIU Y Q, ZHANG K, WANG Y Z, et al. Hierarchical query graph generation for complex question answering over knowledge graph[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York: ACM, 2020: 1285-1294. [77] LAN Y S, JIANG J. Query graph generation for answering multi-hop complex questions from knowledge bases[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 969-974. [78] CHEN Y R, LI H Y, QI G L, et al. Outlining and filling: hierarchical query graph generation for answering complex questions over knowledge graphs[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(8): 8343-8357. [79] ZHU S G, CHENG X, SU S. Knowledge-based question answering by tree-to-sequence learning[J]. Neurocomputing, 2020, 372: 64-72. [80] SUN H T, BEDRAX-WEISS T, COHEN W. PullNet: open domain question answering with iterative retrieval on knowledge bases and text[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 2380-2390. [81] BAKHSHI M, NEMATBAKHSH M, MOHSENZADEH M, et al. SParseQA: sequential word reordering and parsing for answering complex natural language questions over knowledge graphs[J]. Knowledge-Based Systems, 2022, 235: 107626. [82] CHEN Y R, LI H Y. DAM: transformer-based relation detection for question answering over knowledge base[J]. Knowledge-Based Systems, 2020, 201: 106077. [83] CHEN Y R, LI H Y, HUA Y C, et al. Formal query building with query structure prediction for complex question answering over knowledge base[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence, 2020: 3751-3758. [84] AGARWAL D, DAS R, KHOSLA S, et al. Bring your own KG: self-supervised program synthesis for zero-shot KGQA[C]//Proceedings of the Association for Computational Linguistics: NAACL 2024. Stroudsburg: ACL, 2024: 896-919. [85] SAJID N, HASAN M R, IBRAHIM M. Feature engineering in learning-to-rank for community question answering task[J]. International Journal of Computers and Applications, 2024, 46(8): 555-566. [86] SORKHANI S, ETEMADI R, BIGDELI A, et al. Feature-based question routing in community question answering platforms[J]. Information Sciences, 2022, 608: 696-717. [87] GUO J F, FAN Y X, AI Q Y, et al. A deep relevance matching model for ad-hoc retrieval[C]//Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. New York: ACM, 2016: 55-64. [88] YANG L, AI Q Y, GUO J F, et al. aNMM: ranking short answer texts with attention-based neural matching model[C]//Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. New York: ACM, 2016: 287-296. [89] WANG R X, FANG K, ZHOU R K, et al. SERank: optimize sequencewise learning to rank using squeeze-and-excitation network[J]. arXiv:2006.04084, 2020. [90] SHI J X, CAO S L, HOU L, et al. TransferNet: an effective and transparent framework for multi-hop question answering over relation graph[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2021: 4149-4158. [91] SUN Y H, LI G Y, DU J J, et al. A subgraph matching algorithm based on subgraph index for knowledge graph[J]. Frontiers of Computer Science, 2021, 16(3): 163606. [92] ATIF F, EL KHATIB O, DIFALLAH D. BeamQA: multi-hop knowledge graph question answering with sequence-to-sequence prediction and beam search[C]//Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2023: 781-790. [93] JIANG J, ZHOU K, ZHAO W X, et al. UniKGQA: unified retrieval and reasoning for solving multi-hop question answering over knowledge graph[J]. arXiv:2212.00959, 2022. [94] HAO J F, CHENG B. A subgraph retrieval method for complex questions based on hybrid semantics and path representation[J]. ITM Web of Conferences, 2024, 60: 00017. [95] SUN J K, ZHAO J, SUN H, et al. EndCold: an end-to-end framework for cold question routing in community question answering services[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence, 2020: 3244-3250. [96] REN H Y, DAI H, DAI B, et al. LEGO: latent execution-guided reasoning for multi-hop question answering on knowledge graphs[C]//Proceedings of the 38th International Conference on Machine Learning, 2021: 8959-8970. [97] DONG L, WEI F R, ZHOU M, et al. Question answering over freebase with multi-column convolutional neural networks[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2015: 260-269. [98] SAXENA A, TRIPATHI A, TALUKDAR P. Improving multi-hop question answering over knowledge graphs using knowledge base embeddings[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 4498-4507. [99] ABDEL M N, KHATIB E O, GAO S, et al. HyperKGQA: question answering over knowledge graphs using hyperbolic representation learning[C]//Proceedings of the IEEE International Conference on Data Mining. Piscataway: IEEE, 2022: 309-318. [100] XU K, LAI Y X, FENG Y S, et al. Enhancing key-value memory neural networks for knowledge based question answering[C]//Proceedings of the Conference of the North. Stroudsburg: ACL, 2019: 2937-2947. [101] CHEN W H, VERGA P, DE JONG M, et al. Augmenting pre-trained language models with QA-memory for open-domain question answering[C]//Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics. Stroudsburg: ACL, 2023: 1597-1610. [102] WU J M, MU T T, THIYAGALINGAM J, et al. Memory-aware attentive control for community question answering with knowledge-based dual refinement[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(7): 3930-3943. [103] XU X, LI M, TAO C, et al. A survey on knowledge distillation of large language models[J]. arXiv:2402.13116, 2024. [104] MAO Y R, GE Y H, FAN Y J, et al. A survey on LoRA of large language models[J]. Frontiers of Computer Science, 2024, 19(7): 197605. [105] LUO H, TANG Z, PENG S, et al. ChatKBQA: a generate-then-retrieve framework for knowledge base question answering with fine-tuned large language models[J]. arXiv:2310.08975, 2023. [106] LI Z, DENG L, LIU H, et al. UniOQA: a unified framework for knowledge graph question answering with large language models[J]. arXiv:2406.02110, 2024. [107] DONG Z, PENG B, WANG Y, et al. EffiQA: efficient question-answering with strategic multi-model collaboration on knowledge graphs[J]. arXiv:2406.01238, 2024. [108] ZHANG Z Q, WEN L Q, ZHAO W. Rule-KBQA: rule-guided reasoning for complex knowledge base question answering with large language models[C]//Proceedings of the 31st International Conference on Computational Linguistics, 2025:8399-8417. [109] SHEN T, WANG J, ZHANG X, et al. Reasoning with trees: faithful question answering over knowledge graph[C]//Proceedings of the 31st International Conference on Computational Linguistics, 2025: 3138-3157. [110] JIANG L, HUANG J, M?LLER C, et al. Ontology-guided, hybrid prompt learning for generalization in knowledge graph question answering[J]. arXiv:2502.03992, 2025. [111] MAVROMATIS C, KARYPIS G. GNN-RAG: graph neural retrieval for large language model reasoning[J]. arXiv:2405.20139, 2024. [112] ZHANG L, ZHANG J, WANG Y, et al. FC-KBQA: a fine-to-coarse composition framework for knowledge base question answering[J]. arXiv:2306.14722, 2023. [113] ZENG Z F, CHENG Q, HU X C, et al. KoSEL: knowledge subgraph enhanced large language model for medical question answering[J]. Knowledge-Based Systems, 2025, 309: 112837. [114] GAO Z, CAO Y, WANG H, et al. FRAG: a flexible modular framework for retrieval-augmented generation based on knowledge graphs[J]. arXiv:2501.09957, 2025. [115] JEONG S, BAEK J, CHO S, et al. Adaptive-RAG: learning to adapt retrieval-augmented large language models through question complexity[C]//Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg:ACL, 2024: 7036-7050. [116] VETURI S, VAICHAL S, JAGADHEESH R L, et al. Rag based question-answering for contextual response prediction system[J]. arXiv:2409.03708, 2024. [117] PATEL H N, SURTI A, GOEL P, et al. A comparative analysis of large language models with retrieval-augmented generation based question answering system[C]//Proceedings of the 8th International Conference on I-SMAC. Piscataway: IEEE, 2024: 792-798. [118] LIU J W, TAO Y, WANG F, et al. SiQA: a large multi-modal question answering model for structured images based on RAG[C]//Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2025: 1-5. [119] MULUDI K, FITRIA K M, TRILOKA J, et al. Retrieval-augmented generation approach: document question answering using large language model[J]. International Journal of Advanced Computer Science and Applications, 2024, 15(3):776-785. [120] SUN Q, LI S, HUYNH D, et al. TimelineKGQA: a comprehensive question-answer pair generator for temporal knowledge graphs[J]. arXiv:2501.04343, 2025. [121] WEI J, WANG X, SCHUURMANS D, et al. Chain-of-thought prompting elicits reasoning in large language models[C]//Advances in Neural Information Processing Systems, 2022: 24824-24837. [122] YAO S, YU D, ZHAO J, et al. Tree of thoughts: deliberate problem solving with large language models[C]//Advances in Neural Information Processing Systems, 2023: 11809-11822. [123] NING X, LIN Z, ZHOU Z, et al. Skeleton-of-thought: large language models can do parallel decoding[J]. arXiv:2307.15337, 2023. [124] BESTA M, BLACH N, KUBICEK A, et al. Graph of thoughts: solving elaborate problems with large language models[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2024: 17682-17690. [125] SILVER T, HARIPRASAD V, SHUTTLEWORTH R S, et al. PDDL planning with pretrained large language models[C]//Advances in Neural Information Processing Systems, 2022: 1-13. [126] YAO S, ZHAO J, YU D, et al. ReAct: synergizing reasoning and acting in language models[J]. arXiv:2210.03629, 2022. [127] PRESS O, ZHANG M, MIN S, et al. Measuring and narrowing the compositionality gap in language models[J]. arXiv:2210.03350, 2022. [128] SHINN N, CASSANO F, GOPINATH A, et al. Reflexion: language agents with verbal reinforcement learning[C]//Advances in Neural Information Processing Systems, 2023: 8634-8652. [129] WANG L, XU W Y, LAN Y H, et al. Plan-and-Solve prompting: improving zero-shot chain-of-thought reasoning by large language models[J]. arXiv:2305.04091, 2023. [130] LI B, WANG R, GUO J, et al. Deliberate then generate: enhanced prompting framework for text generation[J]. arXiv:2305.19835, 2023. [131] CHEN Z Y, LI D F, ZHAO X, et al. Temporal knowledge question answering via abstract reasoning induction[C]//Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2024: 4872-4889. [132] SHAH M, CAHOON J, MILLETARI M, et al. Improving LLM-based KGQA for multi-hop question answering with implicit reasoning in few-shot examples[C]//Proceedings of the 1st Workshop on Knowledge Graphs and Large Language Models. Stroudsburg: ACL, 2024: 125-135. [133] BAEK J, AJI A, SAFFARI A. Knowledge-augmented language model prompting for zero-shot knowledge graph question answering[C]//Proceedings of the 1st Workshop on Matching from Unstructured and Structured Data. Stroudsburg: ACL, 2023: 70-98. [134] MAHARJAN J, GARIKIPATI A, SINGH N P, et al. OpenMedLM: prompt engineering can out-perform fine-tuning in medical question-answering with open-source large language models[J]. Scientific Reports, 2024, 14(1): 14156. [135] LIU J, HAN X, DENG C, et al. Improving self-consistency for open-domain question answering via automatic prompt engineering and ensemble learning[C]//Proceedings of the International Conference on Natural Language Processing and Chinese Computing. Singapore: Springer Nature Singapore, 2024: 359-371. [136] SHAO Z W, YU Z, WANG M, et al. Prompting large language models with answer heuristics for knowledge-based visual question answering[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 14974-14983. |
| [1] | 吴璇, 付涛. 检索增强生成技术研究综述[J]. 计算机工程与应用, 2025, 61(20): 19-35. |
| [2] | 任衍栋, 张东, 李冠宇. 融合注意力与结构降噪的对比学习知识感知推荐[J]. 计算机工程与应用, 2025, 61(17): 232-240. |
| [3] | 韩明, 曹智轩, 王敬涛, 段丽英, 王剑宏. 基于大语言模型的企业碳排放分析与知识问答系统[J]. 计算机工程与应用, 2025, 61(16): 370-382. |
| [4] | 李晓理, 刘春芳, 耿劭坤. 知识图谱与大语言模型协同共生模式及其教育应用综述[J]. 计算机工程与应用, 2025, 61(15): 1-13. |
| [5] | 何鹏, 姚瑶, 刘秋菊. 时态知识图谱表示学习研究综述[J]. 计算机工程与应用, 2025, 61(14): 37-53. |
| [6] | 郑剑, 余鑫. 使用均值距离与关联性标记的并行OPTICS算法[J]. 计算机工程与应用, 2023, 59(5): 232-244. |
| [7] | 蔡银琼, 范意兴, 郭嘉丰, 张儒清. 基于多表达的第一阶段语义检索模型[J]. 计算机工程与应用, 2023, 59(4): 139-146. |
| [8] | 梁天恺, 苏新铎, 黄宇恒, 徐天适, 张华俊, 曾碧. 智能化表格识别技术综述[J]. 计算机工程与应用, 2023, 59(12): 62-76. |
| [9] | 汪玉, 王鑫, 张淑娟, 郑国强, 赵龙, 郑高峰. 异构大数据环境中高效率知识融合方法的研究[J]. 计算机工程与应用, 2022, 58(6): 142-148. |
| [10] | 汶东震, 张帆, 刘海峰, 杨亮, 徐博, 林原, 林鸿飞. 深度程序理解视角下代码搜索研究综述[J]. 计算机工程与应用, 2022, 58(20): 63-72. |
| [11] | 谢智颖, 何原荣, 李清泉. 基于时空相关性的公交大数据清洗[J]. 计算机工程与应用, 2022, 58(1): 113-121. |
| [12] | 吴昊,徐行健,孟繁军. 课程资源的融合知识图谱多任务特征推荐算法[J]. 计算机工程与应用, 2021, 57(21): 132-139. |
| [13] | 吴东阳,窦建平,李俊. 四旋翼飞行器的数字孪生系统设计[J]. 计算机工程与应用, 2021, 57(16): 237-244. |
| [14] | 王智悦,于清,王楠,王耀国. 基于知识图谱的智能问答研究综述[J]. 计算机工程与应用, 2020, 56(23): 1-11. |
| [15] | 李凌,顾晓梅,刘子豪. 多子域随机森林在情境感知推荐中的应用研究[J]. 计算机工程与应用, 2020, 56(22): 132-141. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||