计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (10): 192-202.DOI: 10.3778/j.issn.1002-8331.2407-0232

• 图形图像处理 • 上一篇    下一篇

基于边缘区域特征细化的无监督点云补全网络研究

陈汉秋,张惊雷,贾鑫   

  1. 1.天津理工大学 电气工程与自动化学院,天津 300384
    2.天津理工大学 工程训练中心,天津 300384
  • 出版日期:2025-05-15 发布日期:2025-05-15

Research on Unsupervised Point Cloud Completion Network Based on Edge Regional Feature Refinement

CHEN Hanqiu, ZHANG Jinglei, JIA Xin   

  1. 1.School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin 300384, China
    2.Engineering Training Center, Tianjin University of Technology, Tianjin 300384, China
  • Online:2025-05-15 Published:2025-05-15

摘要: 现有点云补全方法通常利用区域特征捕捉不同区域的几何结构,而忽略了点云的边缘特征。这些特征描述了点云拐角处或复杂边界处的细节,是恢复精细点云的关键。为了实现区域特征和边缘细节的优势互补,提出了一种基于边缘区域特征细化的无监督点云补全网络。设计区域-边缘特征提取器,引入DGCNN(dynamic graph convolutional neural network)捕获点云的区域特征,并通过构建点云空间位置的归一化图筛选出边缘特征。提出缺失点生成器,将所提取的边缘特征融入局部区域,生成一个相对完整的粗糙点云。构建无监督点细化器,预测出描述点云结构的关键点,并进一步将粗糙点云细化为具有丰富细节的完整点云。在PCN、ShapeNet-55/34、MVP、KITTI数据集上的大量实验证明,该方法获得了先进的补全性能,相比于最新方法SeedFormer和ProxyFormer,MMD指数性能上分别提升了3.7%、2.2%。

关键词: 点云补全, 边缘特征, 特征互补, 无监督细化器

Abstract: Existing point cloud completion methods focus on area features for geometric structure capture, but often overlook critical edge details, which describe the details at the corners or complex boundaries of the point cloud, and are the key to recover the refined point cloud. In order to achieve the complementary advantages of region features and edge details, an unsupervised point cloud completion network based on edge regional feature refinement is proposed. A region-edge feature extractor is designed, which captures the region features of the point cloud via DGCNN (dynamic graph convolutional neural network), and then filters the edge features by constructing a normalized map of the spatial location of the point cloud. A missing-point generator is proposed to incorporate the extracted edge features into the local region to generate a relatively complete rough point cloud. An unsupervised point refiner is constructed to predict key points describing the structure, and further refines the rough point cloud into a complete point cloud with rich details. Extensive experiments on PCN, ShapeNet-55/34, MVP and KITTI datasets demonstrate significant performance gains. In particular, the MMD index is improved by 3.7% and 2.2% compared to the SeedFormer and ProxyFormer.

Key words: point cloud completion, edge features, feature complementarity, unsupervised point refiner