[1] 熊珍凯, 程晓强, 吴幼冬, 等. 基于激光雷达的无人驾驶3D多目标跟踪[J]. 自动化学报, 2023, 49(10): 2073-2083.
XIONG Z K, CHENG X Q, WU Y D, et al. LiDAR-based 3D multi-object tracking for unmanned vehicles[J]. Acta Automatica Sinica, 2023, 49(10): 2073-2083.
[2] 白静, 徐昊. 多层次感知的多视图三维模型重建[J]. 计算机工程与应用, 2023, 59(2): 232-239.
BAI J, XU H. Multi-view 3D model reconstruction based on multi-level perception[J]. Computer Engineering and Applications, 2023, 59(2): 232-239.
[3] 赵阳, 李俊诚, 成博栋, 等. 深度学习在口腔医学影像中的应用与挑战[J]. 中国图象图形学报, 2024, 29(3): 586-607.
ZHAO Y, LI J C, CHENG B D, et al. Applications and challenges of deep learning in dental imaging[J]. Journal of Image and Graphics, 2024, 29(3): 586-607.
[4] WEN X, LI T Y, HAN Z Z, et al. Point cloud completion by skip?attention network with hierarchical folding[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1936-1945.
[5] FEI B, YANG W D, CHEN W M, et al. Comprehensive review of deep learning-based 3D point cloud completion processing and analysis[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 22862-22883.
[6] WEN X, XIANG P, HAN Z Z, et al. PMP-net: point cloud completion by learning multi-step point moving paths[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 7439-7448.
[7] YAN X J, YAN H Y, WANG J J, et al. FBNet: feedback network for point cloud completion[C]//Proceedings of the 17th European Conference on Computer Vision. Cham: Springer, 2022: 676-693.
[8] WANG Y D, TAN D J, NAVAB N, et al. Learning local displacements for point cloud completion[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 1558-1567.
[9] WU H, MIAO Y B. LRA-Net: local region attention network for 3D point cloud completion[C]//Proceedings of the 13th International Conference on Machine Vision, 2021: 357-367.
[10] YUAN W T, KHOT T, HELD D, et al. PCN: point completion network[C]//Proceedings of the 2018 International Conference on 3D Vision. Piscataway: IEEE, 2018: 728-737.
[11] CHARLES R Q, HAO S, MO K C, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 77-85.
[12] QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]//Advances in Neural Information Processing Systems 30, 2017: 5105-5114.
[13] XIANG P, WEN X, LIU Y S, et al. SnowflakeNet: point cloud completion by snowflake point deconvolution with skip-transformer[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 5479-5489.
[14] ZHOU H R, CAO Y, CHU W Q, et al. SeedFormer: patch seeds based point cloud completion with upsample transformer[C]//Proceedings of the 17th European Conference on Computer Vision. Cham: Springer, 2022: 416-432.
[15] HUANG X, HAN B, NING Y Q, et al. Edge-based feature extraction module for 3D point cloud shape classification[J]. Computers & Graphics, 2023, 112: 31-39.
[16] WANG Y, SUN Y B, LIU Z W, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38(5): 1-12.
[17] GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. Cambridge: MIT Press, 2016.
[18] HUANG Z T, YU Y K, XU J W, et al. PF-Net: point fractal network for 3D point cloud completion[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 7659-7667.
[19] XIE H Z, YAO H X, ZHOU S C, et al. GRNet: gridding residual network for dense point cloud completion[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 365-381.
[20] YU X M, RAO Y M, WANG Z Y, et al. PoinTr: diverse point cloud completion with geometry-aware transformers[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 12478-12487.
[21] CHEN Z K, LONG F C, QIU Z F, et al. AnchorFormer: point cloud completion from discriminative nodes[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 13581-13590.
[22] LI S S, GAO P, TAN X Y, et al. ProxyFormer: proxy alignment assisted point cloud completion with missing part sensitive transformer[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 9466-9475.
[23] 陆春媚, 杨志景. 多级精细化反卷积点云补全网络[J]. 计算机工程与应用, 2023, 59(17): 242-249.
LU C M, YANG Z J. Multistage refinement of deconvolution point cloud complementation network[J]. Computer Engineering and Applications, 2023, 59(17): 242-249.
[24] YANG Y Q, FENG C, SHEN Y R, et al. FoldingNet: point cloud auto-encoder via deep grid deformation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 206-215.
[25] DUAN C, CHEN S, TIAN D, et al. Deep graph topology learning for 3D point cloud reconstruction: TR2019-046 [R]. Mitsubishi Electric Research Laboratories, 2019.
[26] GROUEIX T, FISHER M, KIM V G, et al. A papier- maché approach to learning 3D surface generation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 216-224.
[27] TCHAPMI L P, KOSARAJU V, REZATOFIGHI H, et al. TopNet: structural point cloud decoder[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 383-392.
[28] WANG J, CUI Y, GUO D Y, et al. PointAttN: you only need attention for point cloud completion[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38(6): 5472-5480.
[29] TANG J S, GONG Z J, YI R, et al. LAKe-net: topology-aware point cloud completion by localizing aligned keypoints[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 1716-1725.
[30] RONG Y, ZHOU H R, YUAN L X, et al. CRA-PCN: point cloud completion with intra- and inter-level cross-resolution transformers[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38(5): 4676-4685.
[31] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, 2017: 6000-6010.
[32] GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: the KITTI dataset[J]. International Journal of Robotics Research, 2013, 32(11): 1231-1237.
[33] PAN L, CHEN X, CAI Z, et al. Variational relational point completion network[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 8524-8533.
[34] WANG X G, ANG M H, LEE G H. Cascaded refinement network for point cloud completion[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 787-796.
[35] LIU M H, SHENG L, YANG S, et al. Morphing and sampling network for dense point cloud completion[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 11596-11603. |