[1] WU X H, DUAN J W, PAN Y, et al. Medical knowledge graph: data sources, construction, reasoning, and applications[J]. Big Data Mining and Analytics, 2023, 6(2): 201-217.
[2] CHEN Z, WANG Y H, ZHAO B, et al. Knowledge graph completion: a review[J]. IEEE Access, 2020, 8: 192435-192456.
[3] PENG C Y, XIA F, NASERIPARSA M, et al. Knowledge graphs: opportunities and challenges[J]. Artificial Intelligence Review, 2023, 56(11): 13071-13102.
[4] LIANG K, MENG L Y, LIU M, et al. A survey of knowledge graph reasoning on graph types: static, dynamic, and multi-modal[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(12): 9456-9478.
[5] MA M B, XIE P, TENG F, et al. HiSTGNN: hierarchical spatio-temporal graph neural network for weather forecasting[J]. Information Sciences, 2023, 648: 119580.
[6] 吴国栋, 王雪妮, 刘玉良. 知识图谱增强的图神经网络推荐研究进展[J]. 计算机工程与应用, 2023, 59(4): 18-29.
WU G D, WANG X N, LIU Y L. Research advances on graph neural network recommendation of knowledge graph enhancement[J]. Computer Engineering and Applications, 2023, 59(4): 18-29.
[7] TAO M Y, GAO S S, MAO D Q, et al. Knowledge graph and deep learning combined with a stock price prediction network focusing on related stocks and mutation points[J]. Journal of King Saud University-Computer and Information Sciences, 2022, 34(7): 4322-4334.
[8] ASMARA S M, SAHABUDIN N A, NADIAH ISMAIL N S, et al. A review of knowledge graph embedding methods of TransE, TransH and TransR for missing links[C]//Proceedings of the 2023 IEEE 8th International Conference on Software Engineering and Computer Systems. Piscataway: IEEE, 2023: 470-475.
[9] HU B J, YE Y Q, ZHONG Y Q, et al. TransMKR: translation-based knowledge graph enhanced multi-task point-of-interest recommendation[J]. Neurocomputing, 2022, 474: 107-114.
[10] BHATTI U A, TANG H, WU G L, et al. Deep learning with graph convolutional networks: an overview and latest applications in computational intelligence[J]. International Journal of Intelligent Systems, 2023, 2023(1): 8342104.
[11] SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]//Proceedings of the European Semantic Web Conference. Cham: Springer, 2018: 593-607.
[12] VASHISHTH S, SANYAL S, NITIN V, et al. Composition-based multi-relational graph convolutional networks[J]. arXiv:1911.03082, 2019.
[13] MO X Y, HUANG Z Y, XING Y, et al. Multi-agent trajectory prediction with heterogeneous edge-enhanced graph attention network[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 9554-9567.
[14] 肖蕾, 李琪. 时序知识图谱补全方法研究综述[J]. 计算机工程与应用, 2024, 60(6): 43-54.
XIAO L, LI Q. Survey of temporal knowledge graph completion methods[J]. Computer Engineering and Applications, 2024, 60(6): 43-54.
[15] JIANG T, LIU T, GE T, et al. Towards time-aware knowledge graph completion[C]//Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, 2016: 1715-1724.
[16] LACROIX T, OBOZINSKI G, USUNIER N. Tensor decompositions for temporal knowledge base completion[J]. arXiv:2004.04926, 2020.
[17] BAI L Y, MA X N, MENG X X, et al. RoAN: a relation-oriented attention network for temporal knowledge graph completion[J]. Engineering Applications of Artificial Intelligence, 2023, 123: 106308.
[18] NIE H J, ZHAO X G, YAO X, et al. Temporal-structural importance weighted graph convolutional network for temporal knowledge graph completion[J]. Future Generation Computer Systems, 2023, 143: 30-39.
[19] TRIVEDI R, DAI H, WANG Y, et al. Know-evolve: deep temporal reasoning for dynamic knowledge graphs[C]//Proceedings of the International Conference on Machine Learning, 2017: 3462-3471.
[20] TRIVEDI R, FARAJTABAR M, BISWAL P, et al. DyREP: learning representations over dynamic graphs[C]//Proceedings of the International Conference on Learning Representations, 2019.
[21] DENG S, RANGWALA H, NING Y. Dynamic knowledge graph based multi-event forecasting[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2020: 1585-1595.
[22] JIN W, QU M, JIN X, et al. Recurrent event network: autoregressive structure inference over temporal knowledge graphs[J]. arXiv:1904.05530, 2019.
[23] LI Z X, JIN X L, LI W, et al. Temporal knowledge graph reasoning based on evolutional representation learning[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 408-417.
[24] LI Z, GUAN S, JIN X, et al. Complex evolutional pattern learning for temporal knowledge graph reasoning[J]. arXiv:2203.07782, 2022.
[25] HAN Z, DING Z F, MA Y P, et al. Learning neural ordinary equations for forecasting future links on temporal knowledge graphs[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2021: 8352-8364.
[26] HAN Z, CHEN P, MA Y P, et al. Explainable subgraph reasoning for forecasting on temporal knowledge graphs[C]//Proceedings of the International Conference on Learning Representations, 2020.
[27] ZHU C C, CHEN M H, FAN C J, et al. Learning from history: modeling temporal knowledge graphs with sequential copy-generation networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021: 4732-4740.
[28] LI Y J, SUN S L, ZHAO J. TiRGN: time-guided recurrent graph network with local-global historical patterns for temporal knowledge graph reasoning[C]//Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, 2022: 2152-2158.
[29] LI Z, HOU Z, GUAN S, et al. Hismatch: historical structure matching based temporal knowledge graph reasoning[J]. arXiv:2210.09708, 2022.
[30] LIU K Z, ZHAO F, XU G D, et al. RETIA: relation-entity twin-interact aggregation for temporal knowledge graph extrapolation[C]//Proceedings of the 2023 IEEE 39th International Conference on Data Engineering. Piscataway: IEEE, 2023: 1761-1774.
[31] XU Y, OU J J, XU H, et al. Temporal knowledge graph reasoning with historical contrastive learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2023: 4765-4773.
[32] WANG Y C, GUO S, GUO J C, et al. Towards performance-maximizing neural network pruning via global channel attention[J]. Neural Networks, 2024, 171: 104-113.
[33] DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2018.
[34] VASHISHTH S, SANYAL S, NITIN V, et al. InteractE: improving convolution?based knowledge graph embeddings by increasing feature interactions[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 3009-3016.
[35] GAO R. Rethinking dilated convolution for real-time semantic segmentation[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2023: 4675-4684.
[36] JUNG J, JUNG J H, KANG U. Learning to walk across time for interpretable temporal knowledge graph completion[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. New York: ACM, 2021: 786-795.
[37] SEO Y, DEFFERRARD M, VANDERGHEYNST P, et al. Structured sequence modeling with graph convolutional recurrent networks[C]//Proceedings of the 25th International Conference on Neural Information Processing. Cham: Springer, 2018: 362-373. |