[1] 秦前付, 赵景龙, 徐洸. 空中加油计划优化模型及其遗传算法求解[J]. 计算机工程与应用, 2007, 43(35): 219-221.
QIN Q F, ZHAO J L, XU G. Air refueling planning based on genetic algorithm[J]. Computer Engineering and Applications, 2007, 43(35): 219-221.
[2] 闵强. 空中加油软管甩鞭现象建模与载荷计算[J]. 四川轻化工大学学报 (自然科学版), 2020, 33(5): 76-82.
MIN Q. Dynamic modeling and load calculation of hose whipping phenomenon of aerial refueling hose-drogue assembly[J]. Journal of Sichuan University of Science & Engineering (Natural Science Edition), 2020, 33(5): 76-82.
[3] 吴玲, 孙永荣, 黄斌, 等. 不确定环境下的软管-锥套建模及控制研究[J]. 计算机工程与应用, 2017, 53(18): 250-256.
WU L, SUN Y R, HUANG B, et al. Modeling and control of hose-drogue aerial refueling system in uncertain environment[J]. Computer Engineering and Applications, 2017, 53(18): 250-256.
[4] 陈乐乐, 刘学强. 不同对接速度下软式加油管锥套运动特性数值模拟研究[J]. 空气动力学学报, 2017, 35(1): 115-122.
CHEN L L, LIU X Q. Dynamic characteristics analysis of refueling drogue at various docking velocities[J]. Acta Aerodynamica Sinica, 2017, 35(1): 115-122.
[5] WANG H T, DONG X M, LIU J L, et al. Dynamics and control of the hose whipping phenomenon in aerial refueling[C]//Proceedings of the 2015 IEEE Aerospace Conference. Piscataway: IEEE, 2015: 1-18.
[6] 丛继平, 崔利杰, 陈浩然, 等. 空中加油软管“甩鞭” 现象安全性分析与仿真验证[J]. 北京航空航天大学学报, 2020, 46(10): 1958-1965.
CONG J P, CUI L J, CHEN H R, et al. Safety analysis and simulation verification of HWP in aerial refueling[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(10): 1958-1965.
[7] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3431-3440.
[8] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[J]. arXiv:1412.7062, 2014.
[9] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848.
[10] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[J]. arXiv:1706.05587, 2017.
[11] CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2018: 833-851.
[12] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241.
[13] YU C Q, WANG J B, PENG C, et al. BiSeNet: bilateral segmentation network for real-time semantic segmentation[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2018: 334-349.
[14] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017.
[15] XIE E, WANG W, YU Z, et al. SegFormer: simple and efficient design for semantic segmentation with transformers[C]//Advances in Neural Information Processing Systems, 2021: 12077-12090.
[16] LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9992-10002.
[17] DONG X Y, BAO J M, CHEN D D, et al. CSWin transformer: a general vision transformer backbone with cross-shaped windows[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 12114-12124.
[18] ZHANG Y H, YAN J C. Crossformer: transformer utilizing cross-dimension dependency for multivariate time series forecasting[C]//Proceedings of the 11th International Conference on Learning Representations, 2022.
[19] TAN M, LE Q. EfficientNetV2: smaller models and faster training[C]//Proceedings of the International Conference on Machine Learning, 2021: 10096-10106.
[20] ZENG B H, GAO S, XU Y L, et al. Detection of military targets on ground and sea by UAVs with low-altitude oblique perspective[J]. Remote Sensing, 2024, 16(7): 1288.
[21] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[22] LI X T, YOU A S, ZHU Z, et al. Semantic flow for fast and accurate scene parsing[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 775-793.
[23] FAN M Y, LAI S Q, HUANG J S, et al. Rethinking BiSeNet for real-time semantic segmentation[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 9711-9720.
[24] ZHANG W Q, HUANG Z L, LUO G Z, et al. TopFormer: token pyramid transformer for mobile semantic segmentation[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 12073-12083.
[25] HONG Y, PAN H, SUN W, et al. Deep dual-resolution networks for real-time and accurate semantic segmentation of road scenes[J]. arXiv:2101.06085, 2021. |