计算机工程与应用 ›› 2024, Vol. 60 ›› Issue (19): 68-79.DOI: 10.3778/j.issn.1002-8331.2405-0035

• 热点与综述 • 上一篇    下一篇

基于深度神经网络的视频显著目标检测综述

杨成帮,王安志,任春洪,唐洁亮   

  1. 贵州师范大学  大数据与计算机科学学院,贵阳  550025
  • 出版日期:2024-10-01 发布日期:2024-09-30

Review of Video Salient Object Detection Based on Deep Neural Networks

YANG Chengbang, WANG Anzhi, REN Chunhong, TANG Jieliang   

  1. School of Big Data and Computer Science, Guizhou Normal University, Guiyang 550025, China
  • Online:2024-10-01 Published:2024-09-30

摘要: 视频显著目标检测作为计算机视觉领域广泛关注的研究方向之一,其旨在定位和分割出视频中最显著的目标或区域。现有视频显著目标检测方法主要通过构建深度神经网络来从动态视频序列中提取时空特征进行显著性预测。对基于深度学习的视频显著目标检测方法进行全面梳理,阐述了视频显著目标检测的基本概念及应用场景;对基于深度学习的视频显著目标检测方法进行了分类,并按类别进行深入的分析和讨论;对视频显著目标检测领域的权威基准测试数据集及评价指标进行介绍,并在这些基准数据集上对最先进的模型进行了定量和定性实验对比分析和讨论;总结了视频显著目标检测面临的挑战,对其未来发展方向进行了展望。

关键词: 视频显著目标检测, 时空特征, 深度学习

Abstract: Video salient object detection is one of the widely studied research directions in the field of computer vision, which aims to locate and segment the most salient objects or regions in video. The existing video salient object detection methods mainly extract spatiotemporal features from dynamic video sequences for saliency prediction by constructing deep neural networks. A comprehensive review of video salient object detection methods based on deep learning is conducted. Firstly, the basic concepts and application scenarios of video salient object detection are elaborated. Secondly, the video salient object detection methods based on deep learning are classified, and analyzed and discussed in depth by category. Subsequently, authoritative benchmark test datasets and evaluation metrics in the field of video salient object detection are introduced, and quantitative and qualitative experimental comparative analysis and discussion are conducted on the most advanced models on these benchmark datasets. Finally, the challenges faced by video salient object detection are summarized, and its future development directions are discussed.

Key words: video salient object detection, spatiotemporal features, deep learning