计算机工程与应用 ›› 2024, Vol. 60 ›› Issue (19): 46-67.DOI: 10.3778/j.issn.1002-8331.2403-0328
陈丽芳,曹柯欣,张思鹏,白浩然,韩阳,代琪
出版日期:
2024-10-01
发布日期:
2024-09-30
CHEN Lifang, CAO Kexin, ZHANG Sipeng, BAI Haoran, HAN Yang, DAI Qi
Online:
2024-10-01
Published:
2024-09-30
摘要: 群智能优化算法是一种模拟自然界中生物群体行为特征的优化算法,具有全局搜索能力强、适应性强、并行性强和易于实现的优点。群智能优化算法属于生物启发式算法,在解决复杂优化问题时,面临收敛速度、参数敏感性和鲁棒性的挑战。近年来,在群智能优化算法领域,研究者已经提出了一系列新型的群智能优化算法。综述了最新提出的六种群智能优化算法及其变体模型和应用,并在CEC2020测试函数上进行实验。全面评估了这六种群智能优化算法的收敛精度和稳定性,并简要阐述了群智能优化算法的未来发展趋势。
陈丽芳, 曹柯欣, 张思鹏, 白浩然, 韩阳, 代琪. 群智能优化算法最新进展[J]. 计算机工程与应用, 2024, 60(19): 46-67.
CHEN Lifang, CAO Kexin, ZHANG Sipeng, BAI Haoran, HAN Yang, DAI Qi. Recent Progress of Swarm Intelligent Optimization Algorithms[J]. Computer Engineering and Applications, 2024, 60(19): 46-67.
[1] BENI G, WANG J. Swarm intelligence[C]//Proceedings of the NATO Advanced Workshop on Robots and Biological Systems, Italy, 1989: 425-428. [2] COLORNI A, DORIGO M, MANIEZZO V. Distributed optimization by ant colonies[C]//Proceedings of the 1st European Conference on Artificial Life, Paris, 1991: 134-142. [3] SMETS P, KENNES R. The transferable belief model[J]. Artificial Intelligence, 1994, 66(2): 191-234. [4] 陈健瑞, 王景璟, 侯向往, 等. 挺进深蓝: 从单体仿生到群体智能[J]. 电子学报, 2021, 49(12): 2458-2467. CHEN J R, WANG J J, HOU X W, et al. Advance into ocean: from bionic monomer to swarm intelligence[J]. Acta Electronica Sinica, 2021, 49(12): 2458-2467. [5] LI S, CHEN H, WANG M, et al. Slime mould algorithm: a new method for stochastic optimization[J]. Future Generation Computer Systems, 2020, 111: 300-323. [6] FARAMARZI A, HEIDARINEJAD M, MIRJALILI S, et al. Marine predators algorithm: a nature-inspired metaheuristic[J]. Expert Systems with Applications, 2020, 152: 113377. [7] ABDOLLAHZADEH B, SOLEIMANIAN GHAREHCHOPOGH F, MIRJALILI S. Artificial gorilla troops optimizer: a new nature-inspired metaheuristic algorithm for global optimization problems[J]. International Journal of Intelligent Systems, 2021, 36(10): 5887-5958. [8] ABDOLLAHZADEH B, GHAREHCHOPOGH F S, MIRJALILI S. African vultures optimization algorithm: a new nature-inspired metaheuristic algorithm for global optimization problems[J]. Computers & Industrial Engineering, 2021, 158: 107408. [9] TROJOVSKá E, DEHGHANI M, TROJOVSKY P. Zebra optimization algorithm: a new bio-inspired optimization algorithm for solving optimization algorithm[J]. IEEE Access, 2022, 10: 49445-49473. [10] DEHGHANI M, MONTAZERI Z, TROJOVSKá E, et al. Coati optimization algorithm: a new bio-inspired metaheuristic algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2023, 259: 110011. [11] COELLO C A. An updated survey of GA-based multiobjective optimization techniques[J]. ACM Computing Surveys (CSUR), 2000, 32(2): 109-143. [12] MAU?EC M S, BREST J. A review of the recent use of differential evolution for large-scale global optimization: an analysis of selected algorithms on the CEC 2013 LSGO benchmark suite[J]. Swarm and Evolutionary Computation, 2019, 50: 100428. [13] HOFMEYR S A, FORREST S. Architecture for an artificial immune system[J]. Evolutionary Computation, 2000, 8(4): 443-473. [14] AFZAL W, TORKAR R. On the application of genetic programming for software engineering predictive modeling: a systematic review[J]. Expert Systems With Applications, 2011, 38(9): 11984-11997. [15] SIMON D. Biogeography-based optimization[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(6): 702-713. [16] KIRKPATRICK S, GELATT JR C D, VECCHI M P. Optimization by simulated annealing[J]. Science, 1983, 220(4598): 671-680. [17] RASHEDI E, NEZAMABADI-POUR H, SARYAZDI S. GSA: a gravitational search algorithm[J]. Information Sciences, 2009, 179(13): 2232-2248. [18] DEHGHANI M, MONTAZERI Z, DHIMAN G, et al. A spring search algorithm applied to engineering optimization problems[J]. Applied Sciences, 2020, 10(18): 6173. [19] DEHGHANI M, SAMET H. Momentum search algorithm: a new meta-heuristic optimization algorithm inspired by momentum conservation law[J]. SN Applied Sciences, 2020, 2(10): 1720. [20] RAO R V, SAVSANI V J, VAKHARIA D P. Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems[J]. Computer-Aided Design, 2011, 43(3): 303-315. [21] CHENG S, QIN Q, CHEN J, et al. Brain storm optimization algorithm: a review[J]. Artificial Intelligence Review, 2016, 46: 445-458. [22] MOUSAVIRAD S J, EBRAHIMPOUR-KOMLEH H. Human mental search: a new population-based metaheuristic optimization algorithm[J]. Applied Intelligence, 2017, 47: 850-887. [23] YANG X S. A new metaheuristic bat-inspired algorithm[M]//Nature inspired cooperative strategies for optimization. Berlin, Heidelberg: Springer, 2010: 65-74. [24] WEI Y, RAO X, FU Y, et al. Machine learning prediction model based on enhanced bat algorithm and support vector machine for slow employment prediction[J]. Plos One, 2023, 18(11): e0294114. [25] KAVEH A, HOSSEINI S M. Improved bat algorithm based on Doppler effect for optimal design of special truss structures[J]. Journal of Computing in Civil Engineering, 2022, 36(6): 04022028. [26] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. [27] LI H, LV T, SHUI Y, et al. An Improved grey wolf optimizer with weighting functions and its application to unmanned aerial vehicles path planning[J]. Computers and Electrical Engineering, 2023, 111: 108893. [28] LAI W, KUANG M, WANG X, et al. Skin cancer diagnosis (SCD) using artificial neural network (ANN) and improved gray wolf optimization (IGWO)[J]. Scientific Reports, 2023, 13(1): 19377. [29] MIRJALILI S. Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems[J]. Neural Computing and Applications, 2016, 27: 1053-1073. [30] GEORGE D X T, RAJ R E, RAJKUMAR A, et al. Optimal sizing of solar-wind based hybrid energy system using modified dragonfly algorithm for an institution[J]. Energy Conversion and Management, 2023, 283: 116938. [31] SHIRANI M R, SAFI-ESFAHANI F. BMDA: applying biogeography-based optimization algorithm and Mexican hat wavelet to improve dragonfly algorithm[J]. Soft Computing, 2020, 24(21): 15979-16004. [32] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67. [33] WANG C, TU C, WEI S, et al. MSWOA: a mixed-strategy-based improved whale optimization algorithm for multilevel thresholding image segmentation[J]. Electronics, 2023, 12(12): 2698. [34] YI X Y, FENG W K, WU W X, et al. An effective approach for determining rock discontinuity sets using a modified whale optimization algorithm[J]. Rock Mechanics and Rock Engineering, 2023, 56(8): 6143-6155. [35] SAREMI S, MIRJALILI S, LEWIS A. Grasshopper optimisation algorithm: theory and application[J]. Advances in Engineering Software, 2017, 105: 30-47. [36] CHEN L, TIAN Y, MA Y. An improved grasshopper optimization algorithm based on dynamic dual elite learning and sinusoidal mutation[J]. Computing, 2022: 1-35. [37] ZhANG C, HU H, JI J, et al. An evolutionary stacked generalization model based on deep learning and improved grasshopper optimization algorithm for predicting the remaining useful life of PEMFC[J]. Applied Energy, 2023, 330: 120333. [38] XUE J, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34. [39] CHEN Y, WANG Q, ZHONG R, et al. Fiber orientation and boundary stiffness optimization of laminated cylindrical shells with elastic boundary for maximum the fundamental frequency by an improved sparrow search algorithm[J]. Thin-Walled Structures, 2023, 193: 111299. [40] QUAN R, LIANG W, WANG J, et al. An enhanced fault diagnosis method for fuel cell system using a kernel extreme learning machine optimized with improved sparrow search algorithm[J]. International Journal of Hydrogen Energy, 2024, 50: 1184-1196. [41] FAN C, DING Q. Analysing the dynamics of digital chaotic maps via a new period search algorithm[J]. Nonlinear Dynamics, 2019, 97: 831-841. [42] LIU M, ZHANG Y, GUO J, et al. An adaptive lion swarm optimization algorithm incorporating tent chaotic search and information entropy[J]. International Journal of Computational Intelligence Systems, 2023, 16(1): 39. [43] 李志峰, 熊伟丽. 基于多目标麻雀算法的污水处理过程优化控制[J/OL]. 控制工程: 1-10[2024-05-13]. https://doi. org/10.14107/j.cnki.kzgc. 20221011. LI Z F, XIONG W L. Optimal control of wastewater treatment process based on multi-objective sparrow algorithm [J/OL]. Control Engineering of China: 1-10[2024-05-13].https://doi.org/10.14107/j.cnki.kzgc. 20221011. [44] YANG J, CAI Y, TANG D, et al. Memetic quantum optimization algorithm with levy flight for high dimension function optimization[J]. Applied Intelligence, 2022, 52(15): 17922-17940. [45] MOHAPATRA S, MOHAPATRA P. Fast random opposition-based learning golden jackal optimization algorithm[J]. Knowledge-Based Systems, 2023: 110679. [46] 于明洋, 李婷, 许静. 融合多策略改进的侏儒猫鼬算法[J/OL]. 北京航空航天大学学报: 1-16[2024-05-13]. https://doi.org/10.13700/j.bh.1001-5965.2023-0613. YU M Y, LI T, XU J. Enhanced dwarf mongoose optimization algorithm with multi-strategy fusion[J/OL]. Journal of Beijing University of Aeronautics and Astronautics: 1-16[2024-05-13]. https://doi.org/10.13700/j.bh.1001-5965.2023-0613. [47] 刘庆鑫, 齐琦, 贾鹤鸣, 等. 混合改进策略的阿奎拉鹰优化算法[J]. 山东大学学报(工学版), 2023, 53(4): 93-103. LIU Q X, QI Q, JIA H M, et al. Aquila optimizer based on hybrid improved strategies [J]. Journal of Shandong University (Engineering Science), 2023, 53(4): 93-103. [48] FAN Q, CHEN Z, XIA Z. A novel quasi-reflected Harris hawks optimization algorithm for global optimization prob lems[J]. Soft Computing, 2020, 24(19): 14825-14843. [49] DONG H, XU Y L, LI X P, et al. An improved antlion optimizer with dynamic random walk and dynamic opposite learning[J]. Knowledge-Based Systems, 2021, 216: 106752. [50] RIZK-ALLAH R M, HASSANIEN A E. A comprehensive survey on the sine-cosine optimization algorithm[J]. Artificial Intelligence Review, 2023, 56(6): 4801-4858. [51] 郭琴, 郑巧仙. 多策略改进的蜣螂优化算法及其应用[J]. 计算机科学与探索, 2024, 18(4): 930-946. GUO Q, ZHENG Q X. Multi-strategy improved dung beetle optimizer and its application[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 930-946. [52] 范贵城. 基于鲸鱼优化算法的柔性作业车间调度研究[D]. 大连: 大连交通大学, 2023. FAN G C. Research on flexible job shop scheduling based on whale optimization algorithm [D]. Dalian: Dalian Jiaotong University, 2023. [53] 孔芝, 杨青峰, 赵杰, 等. 基于自适应调整权重和搜索策略的鲸鱼优化算法[J]. 东北大学学报(自然科学版), 2020, 41(1): 35-43. KONG Z, YANG Q F, ZHAO J, et al. Adaptive adjustment of weights and search strategies-based whale optimization algorithm[J]. Journal of Northeastern University (Natural Science), 2019, 41(1): 35-43. [54] 赵晓妍, 宋威. 聚集度指标引导的注意力学习粒子群优化算法[J]. 计算机科学与探索, 2023, 17(8): 1852-1866. ZHAO X Y, SONG W. Attention learning particle swarm optimization algorithm guided by aggregation indicator[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1852-1866. [55] 孙波, 赵梦莹, 何晖. 基于BFOA-PSO-GMM的轨道电路故障诊断研究[J/OL]. 铁道学报: 1-8[2024-06-06]. http://kns.cnki.net/kcms/detail/11.2104.u.20231225.1547.002.html. SUN B, ZHAO M Y, HE H. Research on fault diagnosis of track circuit based on BFOA-PSO-GMM[J/OL]. Journal of the China Railway Society: 1-8[2024-06-06]. http://kns. cnki.net/kcms/detail/11.2104.u.20231225.1547.002.html. [56] 张文宁, 周清雷, 焦重阳, 等. 基于灰狼算术混合优化算法的类集成测试序列生成方法[J]. 计算机科学, 2023, 50(5): 72-81. ZHANG W N, ZHOU Q L, JIAO C Y, et al. Hybrid algorithm of grey wolf optimizer and arithmetic optimization algorithm for class integration test order generation[J]. Computer Science, 2023, 50(5): 72-81. [57] FAN G F, LI Y, ZHANG X Y, et al. Short-term load forecasting based on a generalized regression neural network optimized by an improved sparrow search algorithm using the empirical wavelet decomposition method[J]. Energy Science and Engineering, 2023, 11(7): 2444-2468. [58] LI X, LIN Z, LV H, et al. Advanced slime mould algorithm incorporating differential evolution and Powell mechanism for engineering design[J]. iScience, 2023, 26(10): 107736. [59] 李得恺, 张长胜, 杨雪松. 融合多策略改进的黏菌优化算法[J]. 模式识别与人工智能, 2023, 36(7): 647-660. LI D K, ZHANG C S, YANG X S. Improved slime mould algorithm fused with multi-strategy[J]. Pattern Recognition and Artificial Intelligence, 2019, 36(7): 647-660. [60] ABUALIGAH L, DIABAT A, ELAZIZ M A. Improved slime mould algorithm by opposition-based learning and Levy flight distribution for global optimization and advances in real-world engineering problems[J]. Journal of Ambient Intelligence and Humanized Computing, 2021: 1-40. [61] 王鑫禄, 刘大有, 刘思含, 等. 基于黏菌算法的蛋白质多序列比对[J]. 吉林大学学报(工学版), 2022, 52(12): 2984-2993. WANG X L, LIU D Y, LIU S H, et al. Multiple sequence alignment of proteins based on slime mold algorithm[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(12): 2984-2993. [62] 任志玲, 毛奕栋. 基于改进黏菌算法的光伏多峰值MPPT控制[J]. 太阳能学报, 2024, 45 (2): 421-428. REN Z L, MAO Y D. Multi-peak MPPT control of PV array based on improved slime mould algorithm[J]. Acta Energiae Solaris Sinica, 2024, 45 (2): 421-428. [63] MA G Y, YUE X F, ZHU J, et al. A novel slime mold algorithm for grayscale and color image contrast enhancement[J]. Computer Vision and Image Understanding, 2024, 240: 103933. [64] SUMIT K, SULTAN B Y, PRANAV M, et al. Chaotic marine predators algorithm for global optimization of real-world engineering problems[J]. Knowledge-Based Systems, 2023, 261: 110192. [65] 马驰, 曾国辉, 黄勃, 等. 融合混沌对立和分组学习的海洋捕食者算法[J]. 计算机工程与应用, 2022, 58(22): 271-283. MA C, ZENG G H, HUANG B, et al. Marine predator algorithm based on chaotic opposition learning and group learning[J]. Computer Engineering and Applications, 2022, 58(22): 271-283. [66] ZHANG J, XU Y. Training feedforward neural networks using an enhanced marine predators algorithm[J]. Processes, 2023, 11(3): 924. [67] HAN B L, LI B S, QIN C D. A novel hybrid particle swarm optimization with marine predators[J]. Swarm and Evolutionary Computation, 2023, 83: 101375. [68] 付华, 刘尚霖, 管智峰, 等. 阶段化改进的海洋捕食者算法及其应用[J]. 控制与决策, 2023, 38(4): 902-910. FU H, LIU S L, GUAN Z F, et al. Phased-improvement marine predators algorithm and its application[J]. Control and Decision, 2023, 38(4): 902-910. [69] ABDEL-BASSET M, EL-SHAHAT D, CHAKRABORTTY R K, et al. Parameter estimation of photovoltaic models using an improved marine predators algorithm[J]. Energy Conversion and Management, 2021, 227: 113491. [70] DIAB A A Z, TOLBA M A, EL-MAGD A G A, et al. Fuel cell parameters estimation via marine predators and political optimizers[J]. IEEE Access, 2020, 8: 166998-167018. [71] 杨模, 刘紫燕, 梁静, 等. 基于Pareto支配的改进人工大猩猩部队多目标优化[J]. 传感技术学报, 2023, 36(4): 590-601. YANG M, LIU Z Y, LIANG J, et al. Multi-objective optimization of improved artificial gorilla troops based on Pareto domination [J]. Chinese Journal of Sensors and Actuators, 2023, 36(4): 590-601. [72] 赵世杰, 张红易, 马世林. 领导者引导与支配解进化的多目标矮猫鼬算法[J]. 计算机科学与探索, 2024, 18(2): 403-424. ZHAO S J, ZHANG H Y, MA S L. Multi-objective dwarf mongoose optimization algorithm with leader guidance and dominated solution evolution mechanism[J]. Journal of Frontiers of Computer Science and Technology, 2019, 18(2): 403-424. [73] 杜晓昕, 郝田茹, 王波, 等. 基于双重随机扰动的大猩猩算法及工程应用[J/OL]. 北京航空航天大学学报: 1-17[2024-06-06]. https://doi.org/10.13700/j.bh.1001-5965.2023.0404. DU X X, HAO T R, WANG B, et al. Artificial gorilla troops optimizer based on double random disturbance and its application of engineering problem[J/OL]. Journal of Beijing University of Aeronautics and Astronautics: 1-17[2024-06-06]. https://doi.org/10.13700/j.bh.1001-5965.2023.0404. [74] WANG L Y, SHAN S H, PANG M. Improved artificial gorilla troops optimizer with chaotic adaptive parameters-application to the parameter estimation problem of mixed additive and multiplicative random error models[J]. Measurement Science and Technology, 2024, 35(2): 025203. [75] RAMADAN A, EBEED M, KAMEL S, et al. The probabilistic optimal integration of renewable distributed generators considering the time-varying load based on an artificial gorilla troops optimizer[J]. Energies, 2022, 15(4): 1302. [76] SHAHEEN A M, GINIDI A R, EL-SEHIEMY R A, et al. Optimal parameters extraction of photovoltaic triple diode model using an enhanced artificial gorilla troops optimizer[J]. Energy, 2023, 283: 129034. [77] FATHY A, YOUSRI D. An efficient artificial gorilla troops optimizer-based tracker for harvesting maximum power from thermoelectric generation system[J]. Applied Thermal Engineering, 2023, 234: 121290. [78] 申晋祥, 鲍美英, 张景安, 等. 混沌自适应非洲秃鹫优化算法训练多层感知器[J]. 计算机工程与设计, 2024, 45 (2): 546-552. SHEN J X, BAO M Y, ZHANG J A, et al. Chaotic adaptive African vulture optimization algorithm for training multilayer perceptron[J]. Computer Engineering and Design, 2024, 45 (2): 546-552. [79] XIAO Y N, GUO Y L, CUI H et al. IHAOAVOA: an improved hybrid aquila optimizer and African vultures optimization algorithm for global optimization problems[J]. Mathematical Biosciences and Engineering, 2022, 19(11): 10963-11017. [80] SHARIFIAN Z, BAREKATAIN B, QUINTANA A A, et al. Sin-Cos-bIAVOA: a new feature selection method based on improved African vulture optimization algorithm and a novel transfer function to DDoS attack detection[J]. Expert Systems with Applications, 2023, 228: 120404. [81] WANG B, ZHANG Z, SIARRY P, et al. A nonlinear African vulture optimization algorithm combining Henon chaotic map** theory and reverse learning competition strategy[J]. Expert Systems with Applications, 2024, 236: 121413. [82] 张先起, 赵玥, 郑志文, 等. 基于VMD-AVOA-LSSVM模型的月降水量预测研究[J]. 水电能源科学, 2022, 40(12): 1-5.ZHANG X Q, ZHAO Y, ZHENG Z W, et al. Study on prediction of monthly precipitation using VMD-AVOA-LSSVM model[J]. Water Resources and Power, 2022, 40(12): 1-5. [83] MISHRA S, SHAIK A G. Solving bi-objective economic-emission load dispatch of diesel-wind-solar microgrid using African vulture optimization algorithm[J]. Heliyon, 2024, 10 (3): 24993. [84] WANG G, WEI Y, ZHANG X Y, et al. Dynamic stability examination of perovskite solar cells: application of numerical analysis, GAN and African vulture optimization algorithms[J]. Aerospace Science and Technology, 2024, 144: 108736. [85] ELYMANY M M, ENANY M A, ELSONBATY N A. Hybrid optimized-ANFIS based MPPT for hybrid microgrid using zebra optimization algorithm and artificial gorilla troops optimizer[J]. Energy Conversion and Management, 2024, 299: 117809. [86] HOUSSEIN E H, SAMEE N A, MAHMOUD N F, et al. Dynamic coati optimization algorithm for biomedical classification tasks[J]. Computers in Biology and Medicine, 2023, 164: 107237. [87] 宋玟洁, 邓志红, 汪进文. 基于改进浣熊优化算法的制导炮弹空中对准方法[C]//惯性技术发展动态发展方向研讨会文集——新型惯性元件与先进导航技术, 2023. SONG M J, DENG Z H, WANG J W. Guided projectile aerial alignment method based on improved raccoon optimization algorithm[C]//Symposium on Dynamic Development Direction of Inertial Technology—New Inertial Elements and Advanced Navigation Technology, 2023. [88] 秦敏敏, 刘立芳, 齐小刚. 面向维修资源分配调度的遗传-长鼻浣熊混合优化算法[J]. 智能系统学报, 2023, 18(6): 1322-1335. QIN M M, LIU L F, QI X G. Genetic coatis hybrid optimization algorithm for maintenance resource allocation and scheduling[J]. CAAI Transactions on Intelligent Systems, 2023, 18(6): 1322-1335. [89] THIRUMOORTHY K. A two-stage feature selection approach using hybrid quasi-opposition self-adaptive coati optimization algorithm for breast cancer classification[J]. Applied Soft Computing, 2023, 146: 110704. [90] 樊围国, 陈珂翰. 基于浣熊算法优化双向长短期记忆网络的碳价预测[J]. 电力科学与工程, 2023, 39(7): 34-41. FAN W G, CHEN K H. Carbon price prediction based on bidirectional long short term memory network optimization[J]. Electric Power Science and Engineering, 2023, 39(7): 34-41. [91] 苏仁斌, 熊卫红, 刘先珊, 等. 基于新型元启发式BP神经网络的500kV覆冰输电线路力学响应预测研究[J]. 应用基础与工程科学学报, 2024, 32 (1): 100-122. SU R B, XIONG W H, LIU X S, et al. Study on BP neural network based on a new metaheuristic optimization algorithm and prediction of mechanical response for 500kV UHV transmission lines considering icing[J]. Journal of Basic Science and Engineering, 2024, 32 (1): 100-122. [92] ?REPIN?EK M, LIU S, MERNIK L. A note on teaching-learning-based optimization algorithm[J]. Information Sciences, 2012, 212: 79-93. [93] 李雅丽, 王淑琴, 陈倩茹, 等. 若干新型群智能优化算法的对比研究[J]. 计算机工程与应用, 2020, 56(22): 1-12. LI Y L, WANG S Q, CHEN Q R, et al. Comparative study of several new swarm intelligence optimization algorithms [J]. Computer Engineering and Applications, 2020, 56(22): 1-12. [94] 李大海, 刘晓峰, 王振东. 基于动态双种群的黏菌和花粉混合算法[J/OL]. 计算机应用研究: 1-11[2024-05-13]. https://doi.org/10.19734/j.issn.1001-3695.2023.11.0564. LI D H, LIU X F, WANG Z D. Slime mould and flower pollination hybrid algorithm based on dynamic dual population[J/OL]. Application Research of Computers: 1-11[2024-05-13]. https://doi.org/10.19734/j.issn.1001-3695.2023.11.0564. [95] 王逸文, 王维莉, 杨宇鸽, 等. 多策略融合改进的海洋捕食者算法及其工程应用[J/OL]. 计算机集成制造系统: 1-21[2024-05-13]. http://kns.cnki.net/kcms/detail/11.5946.TP.20230515.1111.008. html. WANG Y W, WANG W L, YANG Y G, et al. Improved marine predators algorithm with multi-strategy fusion and its engineering applications[J/OL]. Computer Integrated Manufacturing Systems: 1-21[2024-05-13]. http://kns.cnki.net/kcms/detail/11.5946.TP.20230515.1111.008. html. [96] 范嘉豪. 面向无约束单目标最优化问题的基于群智能的元启发式算法研究[D]. 长春: 吉林大学, 2022. FAN J H. Research on swarm intelligence-based metaheuristic algorithm for unconstrained single object optimization problem[D]. Changchun: Jilin University, 2022. [97] LIU J, LIU Z, WU Y, et al. MBB-MOGWO: modified Boltzmann-based multi-objective grey wolf optimizer[J]. Sensors, 2024, 24(5): 1502. [98] LIANG Z, SHU T, DING Z. A novel improved whale optimization algorithm for global optimization and engineering applications[J]. Mathematics, 2024, 12(5): 636. [99] ZHOU Y, LI C, PANG R, et al. A new approach for seepage parameter inversion of earth-rockfill dams based on an improved sparrow search algorithm[J]. Computers and Geotechnics, 2024, 167: 106036. [100] 李煜, 梁晓, 刘景森, 等. 基于改进平衡优化器算法求解工程优化问题[J/OL]. 计算机集成制造系统: 1-34[2024-05-11]. https://doi.org/10.13196/j.cims.2023.0169. LI Y, LIANG X, LIU J S, et al. Solving engineering optimization problem based on modified equilibrium optimizer algorithm[J/OL]. Computer Integrated Manufacturing Systems: 1-34 [2024-05-11]. https://doi.org/10.13196/j.cims.2023.0169. [101] KUMAR A, WU G, ALI Z M, et al. A test-suite of non-convex constrained optimization problems from the real-world and some baseline results[J]. Swarm and Evolutionary Computation, 2020, 56: 100693. [102] WOLPERT D H, MACREADY W G. No free lunch theorems for optimization[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 67-82. |
[1] | 向婧燕, 周奎, 付勇智, 许洋, 彭旭峰. 考虑稳定性的4WD/4WS无人车路径跟踪控制策略研究[J]. 计算机工程与应用, 2024, 60(6): 349-358. |
[2] | 张笛, 张娜, 闫书丽. 兼顾满意与稳定的应急救援服务供需匹配决策[J]. 计算机工程与应用, 2023, 59(22): 300-306. |
[3] | 安家乐, 刘晓楠, 何明, 宋慧超. 量子群智能优化算法综述[J]. 计算机工程与应用, 2022, 58(7): 31-42. |
[4] | 衣俊艳, 施晓东, 杨刚. 多分支混沌变异的头脑风暴优化算法[J]. 计算机工程与应用, 2022, 58(16): 129-138. |
[5] | 崔增乐,钱晓东. 区块链社交网络信息传播模型的优化研究[J]. 计算机工程与应用, 2021, 57(7): 59-69. |
[6] | 卫保国,张玉兰,周佳明. 图像匹配中的特征点筛选方法[J]. 计算机工程与应用, 2021, 57(3): 208-214. |
[7] | 陈瑶,陈思. 基于自适应多普勒及动态邻域的改进BA算法[J]. 计算机工程与应用, 2021, 57(22): 166-176. |
[8] | 陈雷,尹钧圣. 高斯差分变异和对数惯性权重优化的鲸群算法[J]. 计算机工程与应用, 2021, 57(2): 77-90. |
[9] | 李雅丽,王淑琴,陈倩茹,王小钢. 若干新型群智能优化算法的对比研究[J]. 计算机工程与应用, 2020, 56(22): 1-12. |
[10] | 陈瑶,陈思. 动态权重的蝙蝠算法在图像分割中的应用研究[J]. 计算机工程与应用, 2020, 56(14): 207-215. |
[11] | 黄建新,袁杰. 三维空间机器人主动嗅觉烟羽源自主定位策略[J]. 计算机工程与应用, 2020, 56(12): 223-230. |
[12] | 张水平,高栋. 动态调整搜索策略的果蝇优化算法[J]. 计算机工程与应用, 2020, 56(10): 56-62. |
[13] | 蒋 丽1,2,叶润舟1,2,梁昌勇1,2,陆文星1,2. 改进的二阶振荡粒子群算法[J]. 计算机工程与应用, 2019, 55(9): 130-138. |
[14] | 李 强,于凤芹. 一种改进的基于音高显著性的旋律提取算法[J]. 计算机工程与应用, 2019, 55(3): 115-119. |
[15] | 熊化峰,孙英华,李建波,廉文娟,刘雪庆. 共享经济背景下多属性双边匹配问题求解[J]. 计算机工程与应用, 2019, 55(24): 222-228. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||