[1] GAO X, JIAN M, HU M, et al. Faster multi-defect detection system in shield tunnel using combination of FCN and faster RCNN[J]. Advances in Structural Engineering, 2019, 22(13): 2907-2921.
[2] HU B, ZHOU D, WU Q, et al. An improved defect detection algorithm for industrial products via lightweight convolutional neural network[C]//Proceedings of the 6th International Conference on Advances in Image Processing, 2022: 13-19.
[3] ZHU Z, ZHU P, ZENG J, et al. A surface fatal defect detection method for magnetic tiles based on semantic segmentation and object detection: IEEE ITAIC (ISSN: 2693-2865)[C]//Proceedings of the 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), 2022: 2580-2586.
[4] LIU K, LI A, WEN X, et al. Steel surface defect detection using GAN and one-class classifier[C]//Proceedings of the 2019 25th International Conference on Automation and Computing (ICAC), 2019: 1-6.
[5] 汪颖, 娄树理. 基于改进Deeplabv3+的瓷砖表面缺陷检测[J]. 烟台大学学报 (自然科学与工程版), 2024(1): 74-80.
WANG Y, LOU S L. Tile surface defect detection based on improved Deeplabv3+[J]. Journal of Yantai University (Natural Science and Engineering Edition), 2024(1): 74-80.
[6] 王淑青, 顿伟超, 黄剑锋, 等. 基于YOLOv5的瓷砖表面缺陷检测[J]. 包装工程, 2022, 43(9): 217-224.
WANG S Q, DUN W C, HUANG J F, et al. Ceramic tile surface defect detection based on YOLOv5[J]. Packaging Engineering, 2022, 43(9): 217-224.
[7] 冯昕宇. 基于改进YOLOv5检测模型的瓷砖表面瑕疵检测[D]. 北京: 北京化工大学, 2022.
FENG X Y. Tile surface defect detection based on improved YOLOv5 detection model[D]. Beijing: Beijing University of Chemical Technology, 2022.
[8] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[9] REIS D, KUPEC J, HONG J, et al. Real-time flying object detection with YOLOv8[J]. arXiv:2305.09972, 2023.
[10] SUNKARA R, LUO T. No more strided convolutions or pooling: a new CNN building block for low-resolution images and small objects[C]//Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Cham: Springer Nature Switzerland, 2022: 443-459.
[11] BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[J]. arXiv:1409.0473, 2014.
[12] TONG K, WU Y, ZHOU F. Recent advances in small object detection based on deep learning: a review[J]. Image and Vision Computing, 2020, 97: 103910.
[13] TALAAT F M, ZAINELDIN H. An improved fire detection approach based on YOLO-v8 for smart cities[J]. Neural Computing and Applications, 2023, 35(28): 20939-20954.
[14] YU G, ZHOU X. An improved YOLOv5 crack detection method combined with a bottleneck Transformer[J]. Mathematics, 2023, 11(10): 2377.
[15] QIU L, ZHU W, LI Y, et al. YOLO-based multi-class target detection for SAR images[C]//Proceedings of the 2023 IEEE 7th Information Technology and Mechatronics Engineering Conference (ITOEC), 2023: 1671-1675.
[16] WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020: 390-391.
[17] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016: 770-778.
[18] XU X, JIANG Y, CHEN W, et al. Damo-yolo: a report on real-time object detection design[J]. arXiv:2211.15444, 2022.
[19] FU J, LIU J, TIAN H J, et al. Dual attention network for scene segmentation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 3141-3149.
[20] MA W, WU Y, CEN F, et al. MDFN: multi-scale deep feature learning network for object detection[J]. Pattern Recognition, 2020, 100: 107149.
[21] ZHANG S, CHI C, YAO Y, et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 9759-9768.
[22] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[23] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475.
[24] QI C, GAO J, PEARSON S, et al. Tea chrysanthemum detection under unstructured environments using the TC-YOLO model[J]. Expert Systems with Applications, 2022, 193: 116473.
[25] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[26] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
[27] ZHANG D, ZHENG Z, LI M, et al. CSART: channel and spatial attention-guided residual learning for real-time object tracking[J]. Neurocomputing, 2021, 436: 260-272.
[28] ROSENBLATT F. The perceptron: a probabilistic model for information storage and organization in the brain[J]. Psychological Review, 1958, 65(6): 386.
[29] XU K, BA J, KIROS R, et al. Show, attend and tell: neural image caption generation with visual attention[C]//International Conference on Machine Learning, 2015: 2048-2057.
[30] ROBBINS H, MONRO S. A stochastic approximation method[J]. The Annals of Mathematical Statistics, 1951: 400-407.
[31] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[32] TAN M, LE Q. Efficientnet: rethinking model scaling for convolutional neural networks[C]//Proceedings of the International Conference on Machine Learning, 2019: 6105-6114.
[33] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems, 2015.
[34] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision (ECCV 2016), Amsterdam, The Netherlands, October 11-14, 2016. [S.l.]: Springer International Publishing, 2016: 21-37.
[35] REDMON J, FARHADI A. Yolov3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[36] WANG D, HE D. Channel pruned YOLOV5s-based deep learning approach for rapid and accurate apple fruitlet detection before fruit thinning[J]. Biosystems Engineering, 2021, 210: 271-281.
[37] LV W, XU S, ZHAO Y, et al. Detrs beat yolos on real-time object detection[J]. arXiv:2304.08069, 2023.
[38] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 213-229.
[39] WANG C, HE W, NIE Y, et al. Gold-YOLO: efficient object detector via gather-and-distribute mechanism[J]. arXiv:2309.11331, 2023. |