计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (24): 16-25.DOI: 10.3778/j.issn.1002-8331.2305-0110
杨晓艳,邓淼磊,张德贤,李磊,王翠
出版日期:
2023-12-15
发布日期:
2023-12-15
YANG Xiaoyan, DENG Miaolei, ZHANG Dexian, LI Lei, WANG Cui
Online:
2023-12-15
Published:
2023-12-15
摘要: 人脸识别是一种利用人体面部特征进行身份验证的生物识别技术。但随着年龄的增长,人的面部轮廓以及纹理都会发生很大变化,从而给人脸识别带来了巨大挑战。因此,年龄不变人脸识别(age-invariant face recognition,AIFR)研究具有重要意义。介绍了判别方法的研究现状,包括传统判别方法以及基于深度学习的判别方法,并对优缺点进行梳理总结。梳理了年龄不变人脸识别技术领域内代表性数据集以及常用的评价指标,并将优秀算法的性能在常用数据集上进行了实验比较。对年龄不变人脸识别技术的发展趋势进行了展望。
杨晓艳, 邓淼磊, 张德贤, 李磊, 王翠. 基于判别模型的年龄不变人脸识别方法综述[J]. 计算机工程与应用, 2023, 59(24): 16-25.
YANG Xiaoyan, DENG Miaolei, ZHANG Dexian, LI Lei, WANG Cui. Review of Age-Invariant Face Recognition Methods Based on Discriminant Models[J]. Computer Engineering and Applications, 2023, 59(24): 16-25.
[1] TANG J,XU P,NIE W,et al.A review of recent advances in identity identification technology based on biological features[C]//Proceedings of 6th CCF Conference on Big Data,Xi’an,China,October 11-13,2018:178-195. [2] SABHANAYAGAM T,VENKATESAN V P,SENTHAMARAIKANNAN K.A comprehensive survey on various biometric systems[J].International Journal of Applied Engineering Research,2018,13(5):2276-2297. [3] ADJABI I,OUAHABI A,BENZAOUI A,et al.Past,present,and future of face recognition:a review[J].Electronics,2020,9(8):1188. [4] NASUTION M I P,NURBAITI N,NURLAILA N,et al.Face recognition login authentication for digital payment solution at COVID-19 pandemic[C]//2020 3rd International Conference on Computer and Informatics Engineering(IC2IE),2020:48-51. [5] AWAIS M,IQBAL M J,AHMAD I,et al.Real-time surveillance through face recognition using HOG and feedforward neural networks[J].IEEE Access,2019,7:121236-121244. [6] MILLIGAN C S.Facial recognition technology,video surveillance,and privacy[J].The Southern California Interdisciplinary Law Journal,1999,9:295. [7] MORTEZAIE Z,HASSANPOUR H.A survey on age-invariant face recognition methods[J].Jordanian Journal of Computers and Information Technology,2019,5(2). [8] BARUNI K,MOKOENA N,VEERARAGOO M,et al.Age invariant face recognition methods:a review[C]//2021 International Conference on Computational Science and Computational Intelligence(CSCI),2021:1657-1662. [9] LI Z,GONG D,LI X,et al.Aging face recognition:a hierarchical learning model based on local patterns selection[J].IEEE Transactions on Image Processing,2016,25(5):2146-2154. [10] YOUSAF A,KHAN M J,SIDDIQUI A M,et al.A robust and efficient convolutional deep learning framework for age-invariant face recognition[J].Expert Systems,2020,37(3):e12503. [11] SAJID M,ALI N,RATYAL N I,et al.Deep learning in age-invariant face recognition:a comparative study[J].The Computer Journal,2022,65(4):940-972. [12] LING H,SOATTO S,RAMANATHAN N,et al.Face verification across age progression using discriminative methods[J].IEEE Transactions on Information Forensics and Security,2009,5(1):82-91. [13] BOSCH A,ZISSERMAN A,MUNOZ X.Representing shape with a spatial pyramid kernel[C]//Proceedings of the 6th ACM International Conference on Image and Video Retrieval,2007:401-408. [14] NOBLE W S.What is a support vector machine?[J].Nature Biotechnology,2006,24(12):1565-1567. [15] LI Z,PARK U,JAIN A K.A discriminative model for age invariant face recognition[J].IEEE Transactions on Information Forensics and Security,2011,6(3):1028-1037. [16] LOWE D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60:91-110. [17] OJALA T,PIETIKAINEN M,MAENPAA T.Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(7):971-987. [18] OTTO C,HAN H,JAIN A.How does aging affect facial components?[C]//European Conference on Computer Vision,Florence,Italy,October 7-13,2012:189-198. [19] COOTES T F,TAYLOR C J,COOPER D H,et al.Active shape models-their training and application[J].Computer Vision and Image Understanding,1995,61(1):38-59. [20] FISHER R A.The use of multiple measurements in taxonomic problems[J].Annals of Eugenics,1936,7(2):179-188. [21] SUNGATULLINA D,LU J,WANG G,et al.Multiview discriminative learning for age-invariant face recognition[C]//2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition(FG),2013:1-6. [22] OJALA T,PIETIK?INEN M,HARWOOD D.A comparative study of texture measures with classification based on featured distributions[J].Pattern Recognition,1996,29(1):51-59. [23] GONG D,LI Z,LIN D,et al.Hidden factor analysis for age invariant face recognition[C]//Proceedings of the IEEE Understanding Conference on Computer Vision,2013:2872-2879. [24] DALAL N,TRIGGS B.Histograms of oriented gradients for human detection[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR’05),2005:886-893. [25] GONG D,LI Z,TAO D,et al.A maximum entropy feature descriptor for age invariant face recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2015:5289-5297. [26] SI J,LI W.Age-invariant face recognition using a feature progressing model[C]//2015 3rd IAPR Asian Conference on Pattern Recognition(ACPR),2015:775-780. [27] LI H,ZOU H,HU H.Modified hidden factor analysis for cross-age face recognition[J].IEEE Signal Processing Letters,2017,24(4):465-469. [28] WEN Y,LI Z,QIAO Y.Latent factor guided convolutional neural networks for age-invariant face recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:4893-4901. [29] LIU W,WEN Y,YU Z,et al.Large-margin softmax loss for convolutional neural networks[J].arXiv:1612.02295,2016. [30] HADSELL R,CHOPRA S,LECUN Y.Dimensionality reduction by learning an invariant mapping[C]//2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR’06),2006:1735-1742. [31] XU C,LIU Q,YE M.Age invariant face recognition and retrieval by coupled auto-encoder networks[J].Neurocomputing,2017,222:62-71. [32] WANG W,CUI Z,CHANG H,et al.Deeply coupled auto-encoder networks for cross-view classification[J].arXiv:1402.2031,2014. [33] ZHENG T,DENG W,HU J.Age estimation guided convolutional neural network for age-invariant face recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,2017:1-9. [34] LI H,HU H,YIP C.Age-related factor guided joint task modeling convolutional neural network for cross-age face recognition[J].IEEE Transactions on Information Forensics and Security,2018,13(9):2383-2392. [35] DU L,HU H,WU Y.Age factor removal network based on transfer learning and adversarial learning for cross-age face recognition[J].IEEE Transactions on Circuits and Systems for Video Technology,2019,30(9):2830-2842. [36] WEISS K,KHOSHGOFTAAR T M,WANG D D.A survey of transfer learning[J].Journal of Big Data,2016,3(1):1-40. [37] GANIN Y,USTINOVA E,AJAKAN H,et al.Domain-adversarial training of neural networks[J].The Journal of Machine Learning Research,2016,17(1):2096-2030. [38] LI Y,WANG G,NIE L,et al.Distance metric optimization driven convolutional neural network for age invariant face recognition[J].Pattern Recognition,2018,75:51-62. [39] KULIS B.Metric learning:a survey[J].Foundations and Trends? in Machine Learning,2013,5(4):287-364. [40] WANG Y,GONG D,ZHOU Z,et al.Orthogonal deep features decomposition for age-invariant face recognition[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:738-753. [41] WANG H,GONG D,LI Z,et al.Decorrelated adversarial learning for age-invariant face recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:3527-3536. [42] HARDOON D R,SZEDMAK S,SHAWE-TAYLOR J.Canonical correlation analysis:an overview with application to learning methods[J].Neural Computation,2004,16(12):2639-2664. [43] BIANCO S.Large age-gap face verification by feature injection in deep networks[J].Pattern Recognition Letters,2017,90:36-42. [44] BERTINETTO L,VALMADRE J,HENRIQUES J F,et al.Fully-convolutional siamese networks for object tracking[J].arXiv:1606.09549,2016. [45] MOUSTAFA A A,ELNAKIB A,AREED N F F.Optimization of deep learning features for age-invariant face recognition[J].International Journal of Electrical and Computer Engineering,2020,10(2):1833. [46] YAN C,MENG L,LI L,et al.Age-invariant face recognition by multi-feature fusion and decomposition with self-attention[J].ACM Transactions on Multimedia Computing,Communications,and Applications(TOMM),2022,18(1s):1-18. [47] 刘成,曹良才,靳业,等.一种基于Transformer的跨年龄人脸识别方法[J].激光与光电子学进展,2023,60(10):1010019. LIU C,CAO L C,JIN Y,et al.Transformer for age-invariant face recognition[J].Laser and Optoelectronics Progress,2023,60(10):1010019. [48] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Advances in Neural Information Processing Systems,2017. [49] YUAN L,CHEN Y,WANG T,et al.Tokens-to-token vit:training vision transformers from scratch on imagenet[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2021:558-567. [50] 闫鹏飞,张忠民.基于多任务学习的跨年龄人脸识别[J].哈尔滨商业大学学报(自然科学版),2023,39(1):53-59. YAN P F,ZHANG Z M.Face recognition across ages based on multitasking learning[J].Journal of Harbin University of Commerce(Natural Science Edition),2023,39(1):53-59. [51] GLOROT X,BORDES A,BENGIO Y.Deep sparse rectifier neural networks[C]//Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics,2011:315-323. [52] DENG J,GUO J,XUE N,et al.Arcface:additive angular margin loss for deep face recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:4690-4699. [53] ZHAO J,YAN S,FENG J.Towards age-invariant face recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,44(1):474-487. [54] HUANG Z,ZHANG J,SHAN H.When age-invariant face recognition meets face age synthesis:a multi-task learning framework[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:7282-7291. [55] LANITIS A,COOTES T.Fg-net aging data base[J].Cyprus College,2002,2(3):5. [56] CHANG K Y,CHEN C S,HUNG Y P.Ordinal hyperplanes ranker with cost sensitivities for age estimation[C]//Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition,2011:585-592. [57] IQBAL M T B,SHOYAIB M,RYU B,et al.Directional age-primitive pattern(DAPP) for human age group recognition and age estimation[J].IEEE Transactions on Information Forensics and Security,2017,12(11):2505-2517. [58] RICANEK K,TESAFAYE T.Morph:a longitudinal image database of normal adult age-progression[C]//7th International Conference on Automatic Face and Gesture Recognition(FGR06),2006:341-345. [59] SHI C,ZHANG J,YAO Y,et al.CAN-GAN:conditioned-attention normalized GAN for face age synthesis[J].Pattern Recognition Letters,2020,138:520-526. [60] LIU T J,LIU K H,LIU H H,et al.Age estimation via fusion of multiple binary age grouping systems[C]//2016 IEEE International Conference on Image Processing(ICIP),2016:609-613. [61] CHEN B C,CHEN C S,HSU W H.Cross-age reference coding for age-invariant face recognition and retrieval[C]//Proceedings 13th European Conference on Computer Vision,Zurich,Switzerland,September 6-12,2014:768-783. [62] HUANG G B,MATTAR M,BERG T,et al.Labeled faces in the wild:a database for studying face recognition in unconstrained environments[C]//Workshop on Faces in “Real-Life” Images and Recognition,Fetection,Alignment,2008. [63] DELAC K,GRGIC M,GRGIC S.Statistics in face recognition:analyzing probability distributions of PCA,ICA and LDA performance results[C]//Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis,2005:289-294. [64] CRAIG J C.A confusion matrix for tactually presented letters[J].Perception & Psychophysics,1979,26:409-411. [65] ALSUBAI S,HAMDI M,ABDEL-KHALEK S,et al.Bald eagle search optimization with deep transfer learning enabled age-invariant face recognition model[J].Image and Vision Computing,2022,126:104545. [66] ZHOU S,XIAO S.3D face recognition:a survey[J].Human-centric Computing and Information Sciences,2018,8(1):1-27. |
[1] | 赵继贵, 钱育蓉, 王魁, 侯树祥, 陈嘉颖. 中文命名实体识别研究综述[J]. 计算机工程与应用, 2024, 60(1): 15-27. |
[2] | 周建亭, 宣士斌, 王婷. 融合遮挡信息的改进DDETR无人机目标检测算法[J]. 计算机工程与应用, 2024, 60(1): 236-244. |
[3] | 林文龙, 阿里甫·库尔班, 陈一潇, 袁旭. 面向遥感影像目标检测的ACFEM-RetinaNet算法[J]. 计算机工程与应用, 2024, 60(1): 245-253. |
[4] | 陈吉尚, 哈里旦木·阿布都克里木, 梁蕴泽, 阿布都克力木·阿布力孜, 米克拉依·艾山, 郭文强. 深度学习在符号音乐生成中的应用研究综述[J]. 计算机工程与应用, 2023, 59(9): 27-45. |
[5] | 姜秋香, 郭伟鹏, 王子龙, 欧阳兴涛, 隆睿睿. Python语言在水文水资源领域中的应用与展望[J]. 计算机工程与应用, 2023, 59(9): 46-58. |
[6] | 罗会兰, 陈翰. 时空卷积注意力网络用于动作识别[J]. 计算机工程与应用, 2023, 59(9): 150-158. |
[7] | 刘华玲, 皮常鹏, 赵晨宇, 乔梁. 基于深度域适应的跨域目标检测算法综述[J]. 计算机工程与应用, 2023, 59(8): 1-12. |
[8] | 何家峰, 陈宏伟, 骆德汉. 深度学习实时语义分割算法研究综述[J]. 计算机工程与应用, 2023, 59(8): 13-27. |
[9] | 张艳青, 马建红, 韩颖, 曹仰杰, 李颉, 杨聪. 真实场景下图像超分辨率重建研究综述[J]. 计算机工程与应用, 2023, 59(8): 28-40. |
[10] | 岱超, 刘萍, 史俊才, 任鸿杰. 利用U型网络的遥感影像建筑物规则化提取[J]. 计算机工程与应用, 2023, 59(8): 105-116. |
[11] | 王静, 金玉楚, 郭苹, 胡少毅. 基于深度学习的相机位姿估计方法综述[J]. 计算机工程与应用, 2023, 59(7): 1-14. |
[12] | 蒋玉英, 陈心雨, 李广明, 王飞, 葛宏义. 图神经网络及其在图像处理领域的研究进展[J]. 计算机工程与应用, 2023, 59(7): 15-30. |
[13] | 周玉蓉, 张巧灵, 于广增, 徐伟强. 基于声信号的工业设备故障诊断研究综述[J]. 计算机工程与应用, 2023, 59(7): 51-63. |
[14] | 韦健, 赵旭, 李连鹏. 融合位置信息注意力的孪生弱目标跟踪算法[J]. 计算机工程与应用, 2023, 59(7): 198-206. |
[15] | 赵宏伟, 郑嘉俊, 赵鑫欣, 王胜春, 李浥东. 基于双模态深度学习的钢轨表面缺陷检测方法[J]. 计算机工程与应用, 2023, 59(7): 285-293. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||