计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (5): 94-103.DOI: 10.3778/j.issn.1002-8331.2109-0126
唐宏,范森,唐帆,朱龙娇
TANG Hong, FAN Sen, TANG Fan , ZHU Longjiao
摘要: 为了解决信息过载问题,提出了一种融合知识图谱与注意力机制的推荐模型。在该模型中,将知识图谱作为辅助信息进行嵌入,可以缓解传统推荐算法数据稀疏和冷启动问题,并且给推荐结果带来可解释性。为了提升推荐准确率以及捕捉用户兴趣的动态变化,再结合深度学习中的神经网络以及注意力机制生成用户自适应表示,加上动态因子来更好地捕捉用户动态兴趣变化,使用多层感知机对项目进行评分预测。在MovieLens-latest-small电影数据集和豆瓣数据集进行仿真验证,结果表明该模型进行TOP-K列表电影推荐相比于其他算法拥有更好的推荐性能。