计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (22): 68-77.DOI: 10.3778/j.issn.1002-8331.2105-0314

• 热点与综述 • 上一篇    下一篇

基于视觉的动态手势识别研究综述

解迎刚,王全   

  1. 1.北京信息科技大学 信息与通信工程学院,北京 100101
    2.北京信息科技大学 现代测控技术教育部重点实验室,北京 100101
  • 出版日期:2021-11-15 发布日期:2021-11-16

Summary of Dynamic Gesture Recognition Based on Vision

XIE Yinggang, WANG Quan   

  1. 1.Institute of Information and Communication, Beijing Information Science & Technology University, Beijing 100101, China
    2.Key Laboratory of Modern Measurement and Control Technology Ministry of Education, Beijing Information Science & Technology University, Beijing 100101, China
  • Online:2021-11-15 Published:2021-11-16

摘要:

手势自古以来在人类交流方面扮演着非常重要的角色,而基于视觉的动态手势识别技术是利用计算机视觉、物联网感知等新兴技术和3D视觉传感器等新型设备让机器能够理解人类的手势,从而让人类能和机器更好地交流,因此对于人机交互等领域的研究很有意义。介绍了动态手势识别中所用到的传感器技术,并比较了相关传感器的技术参数。通过追踪近年来国内外关于视觉的动态手势识别技术,陈述了动态手势识别的处理流程:手势检测与分割、手势追踪、手势分类。通过对比各流程所涉及的方法,可以发现深度学习具有较强的容错性、高度并行性、抗干扰性等一系列优点,在手势识别领域取得了远高于传统学习算法的成就。最后分析了动态手势识别目前遇到的挑战和未来可能的发展方向。

关键词: 视觉动态手势识别, 手势检测与分割, 手势追踪, 手势分类, 手势识别

Abstract:

Gestures have played a very important role in human communication since ancient times, and the visual dynamic gesture identification technology is to use new technologies such as computer vision and IOT(Internet of Things) perception, and 3D visual sensors, allowing the machine to understand human gestures, thus making humanity and machine more good communication, because of far-reaching research significance for human-machine interaction. The sensor techniques used in dynamic gesture identification are introduced, and the technical parameters of the related sensors are compared. By tracking the dynamic gesture recognition technology of vision at home and abroad, the processing process of dynamic gesture recognition is first stated:gesture detection and segmentation, gesture tracking, gesture classification. By comparing the methods involved in each process, it can be seen that deep learning has strong fault tolerance, robustness, high parallelism, anti-interference, etc., which has achieved great achievements above the traditional learning algorithm in the field of gesture identification. Finally, the challenges currently encountering and the future possible development of dynamic gesture identification are analyzed.

Key words: visual dynamic gesture identification, gesture detection and segmentation, gesture tracking, gesture classification, gesture recognition