计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (22): 53-67.DOI: 10.3778/j.issn.1002-8331.2106-0342

• 热点与综述 • 上一篇    下一篇

神经网络验证和测试技术研究综述

李舵,董超群,司品超,何曼,刘钱超   

  1. 1.战略支援部队信息工程大学,郑州 450001
    2.江南计算技术研究所 软件测评中心,江苏 无锡 214083
  • 出版日期:2021-11-15 发布日期:2021-11-16

Survey of Research on Neural Network Verification and Testing Technology

LI Duo, DONG Chaoqun, SI Pinchao, HE Man, LIU Qianchao   

  1. 1.PLA Strategic Support Force Information Engineering University, Zhengzhou 450001, China
    2.Software Testing and Evaluation Center, Jiangnan Institute of Computing Technology, Wuxi, Jiangsu 214083, China
  • Online:2021-11-15 Published:2021-11-16

摘要:

神经网络技术在图像处理、文本分析和语音识别等领域取得了令人瞩目的成就,随着神经网络技术应用到一些安全攸关的领域,如何保证这些软件应用的质量就显得尤为重要。基于神经网络技术的软件在开发和编程上和传统软件有着本质的区别,传统测试技术很难直接应用到此类软件中,研究针对神经网络的验证和测试评估技术十分必要。从有效评估和测试神经网络出发,对神经网络验证和测试技术的研究现状进行梳理,分别从验证技术、基于覆盖的测试技术、基于对抗样本的测试技术、融合传统测试技术等方面进行了归纳和分类。对其中一些关键技术的基本思想和实现做了简明扼要的介绍,并列举了一些测试框架和工具,总结了神经网络验证和测试工作面临的挑战,为该领域的研究人员提供参考。

关键词: 神经网络, 测试评估, 验证技术, 测试技术

Abstract:

Neural network technology has made remarkable achievements in the fields of image processing, text analysis and speech recognition. With the application of neural network technology to some security related fields, how to ensure the quality of these software applications is particularly important. Software based on neural network technology is essentially different from traditional software in development and programming. Traditional testing technology is difficult to be directly applied to this kind of software. It is necessary to study the verification and testing evaluation technology for neural network. To effectively evaluate and test neural networks, this paper reviews the research status of neural network verification and testing technology, summarizes and classifies the verification technology, testing technology based on coverage, testing technology based on adversarial sample, and fusing traditional testing technology. The basic idea and implementation of some key technologies are briefly introduced, and some testing frameworks and tools are listed. The challenges of neural network verification and testing are summarized, which can provide reference for researchers in this field.

Key words: neural networks, test evaluation, verification technology, testing technology