计算机工程与应用 ›› 2017, Vol. 53 ›› Issue (9): 170-174.DOI: 10.3778/j.issn.1002-8331.1511-0324

• 模式识别与人工智能 • 上一篇    下一篇

基于BOF-Gist特征的手势识别算法研究

丁  毅1,曹江涛1,李  平1,姬晓飞2   

  1. 1.辽宁石油化工大学 信息与控制工程学院,辽宁 抚顺 113001
    2.沈阳航空航天大学 自动化学院,沈阳 110136
  • 出版日期:2017-05-01 发布日期:2017-05-15

Research on hand posture recognition algorithm based on BOF-Gist feature

DING Yi1, CAO Jiangtao1, LI Ping1, JI Xiaofei2   

  1. 1. School of Information and Control Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, China
    2. School of Automation, Shenyang Aerospace University, Shenyang 110136, China
  • Online:2017-05-01 Published:2017-05-15

摘要: 针对静态手势识别算法存在特征计算复杂度高,实时性差的问题,提出了一种新的BOF-Gist特征对手势图像进行表示。该特征的优势是在保持Gist特征原有优势的基础上,有效地表征手势图像的局部特征和全局特征,并且特征维数明显降低,实时性好。在标准数据库上的测试表明,该算法对于简单、复杂背景下十种手语手势分别得到了90.42%与79.05%的正确识别率,同时验证了算法的实时性。

关键词: 手势识别, 特征袋, 全局特征, 局部特征, 实时性

Abstract: Aiming at the problem of high computational complexity and poor real-time performance of static gesture recognition algorithm, a novel BOF-Gist feature is proposed. This feature can effectively represent the local features and global features of hand posture image with the original advantages of Gist features, the feature dimension is relatively lower, and the real-time performance is better. The testing results on the standard database show that correct recognition rate of the algorithm is 90.42% and 79.05% respectively for ten sign language postures under simple and complex background, and at the same time the real-time performance of the algorithm is verified.

Key words: hand posture recognition, bag of features, global feature, local feature, real time